对称规范下讨论朗道能级, 量子霍尔效应.pdf
CHAPTER 2. íP(5¡:-Ñ–® 12 ~=A ~ · P~ = B (xPˆy ⌘Ï_ÔÂ(˘ƒ⇤î∫⇢1éP~ · A 2 Hxy = = y Pˆx ) = B2 Lˆz , 1 ˆ eB 2 eB 2 [(Px y) + (Pˆy + x) ] 2µ 2c 2c 2 1 ˆ2 e2 B 2 2 eB ˆ (Px + Pˆy ) + (x + y 2 ) + Lz 2 2µ 8µc 2µc ~ $y:Ô⌃„: µ ~ · B, y1BÒ¸ e2 B 2 (x + y 2 ) 4µc @H e ˆ = Lz @B 2µc µz = :Ò¸¡È. (üPÖË 5P˚®⇤Ùx2 + y 2 ✏ Ô ˝e. ⌘ÏeB„˝œ,Åπ↵⇥ ÷ÅP⌥⇢ ~2 r2 = Px2 + Py2 = ~2 ( @2 1 @ + ) 2 @⇢ ⇢ @⇢ 2 @ 1 @ 2 v- @⇢ 2 + ⇢ @⇢ = P⇢ , :Ñ⌘®œÑsπ⇥ Hxy = ~2 @ 2 ⇢2 @'2 L2 y:“⌘®œsπ ⇢2z . é/ P⇢2 L2 1 2 2 + z 2 + µ!L ⇢ + !L Lˆz , 2µ 2µ⇢ 2 (2.52) eB v-!L = 2µc = !2c , :Larmor ëá. dª y Ÿ/ Ë ✏ 0Hxy *åÙÄ⇣/PÑ»∆œ Lz ˘ ◆ ÷(Hxy , Lz ): å h ∆. æ (⇢, ') = R(⇢)eim' , ö 1 I = ⇢ 2 R, Ôó0Ñ⌘,Åπ↵ ~2 2µ v-E 0 = E ~2 1 1 2 2 (m2 ) + µ!L ⇢ = (E m~!L ) 2µ⇢2 4 2 (m + 12 )(m 12 )~2 2µ 1 2 2 00 + 2 (E 0 µ! ⇢ ) = 0 2 ~ 2µ⇢ 2 L 00 + m~!L . ⇧1/åÙ⇣/PÑÑ⌘–®π↵. Ù-√õøÑ⌘π↵ ”+ 2µ (E ~2 l(l + 1)~2 2µr2 1 2 2 µ! r ) = 0 2 (2.53) ‘É, ⌘Ï↵0˘îs˚r $ ⇢, l $ |m| 12 . ›˘⇤Q0⇢Âm < 0, Ô 9ô(m + 12 )(m 12 ) = ( m 12 )( m + 12 ). ˘é Ù⇣/P, Ú E0 = = Ù⇣/PÑ˝ßåÑ⌘,Å˝p 3 3 (2nr + l + )~! = (N + )~!, v-N = 2nr + l 2 2 ↵2 r 2 3 rl+1 e 2 F ( nr , l + , ↵2 r2 ) 2 2.4. ⌫S˝ß 13 F : AÖ‡Ußp, ↵ = p µ!/~. 2 2 ⌘ÏÔÂ{‘ó0åÙ⇣/PV = 12 µ!L ⇢ Ñ˝œ,Å<åÑ⌘‚˝p 1 3 + )~!L = (N 0 + 1)~!L , 2 2 E 0 = (2n⇢ + |m| (2.54) v-N 0 = 2n⇢ + |m|, 1 = ⇢|m|+ 2 e 2 ↵2 L⇢ 2 2 2 F ( n⇢ , |m| + 1, ↵L ⇢ ) (2.55) 2 v-↵L = µ!L /~ = eB/(2~c). ó0 1 E = E 0 + m~!L = (N + 1)~!L = (n + )~!c , 2 v-(0N = 2n⇢ + |m| + m, n = n⇢ + |m|+m . Ÿ 2 ß”ú/ ”ú (2.56) Mbó0Ñ⌫S˝ ÙÑ. ®∫ • @ m < 0Ñ ˝œ¯ ˝ßÄv¶‡w: Ÿön⇢ ≈µ↵ |m|Ÿ˙¡Èø˝äN. Ê 0ˆl®®˝ä' ®œ⇥ (⌫Sƒ⇤↵ Ÿh ÅË✏ Lz _ m< /:∞“ ‡w'˚flÑ˝ßÄv¶_/‡w'. • Çú⇤QûE˚fl:¯ P: A: *⌃ÿ. )(œ“*”‚˝p`bÔ' hc ¶:⇡ ⇡( ↵12 ) = eB , ⌘ÏÕ6ÔÂó˙Äv¶:f = BA hc L e ⌘Ï↵0 Ñ‘ƒ⇤’Ÿ˙Üåh l✏/ 7Ñ⇥Äv¶/ Mb®∫⌫Sƒ⇤↵ Ñ˝œ,Å‚˝p F/˝ß 7Ñ⇥ P:¯˚flˆ(ÑπLaˆ/xπ⌘h @ ‡’˘î0˘ƒ⇤Ñ≈b. • (˝ßÄv≈µ↵ õfœåh∆ ˝œ,Å˝p ¯Sé ÷ :Ù“P⌥˙‚ ⇤P⌥˙‚Ñ Ô¬g˘‘⇢ Ù⌅⌘ àc8 Ÿ/1é ÑHilbertzÙÑ˙‚ ÷Ü Ñ Ú⇥`ÔÂ⌃„ ⇥ ÷(Hx , Hy , Hz):åh∆ '⇣/PÑ˝œ,Å˝p⇥ ÷(H, L2 , Lz ):åh∆Ñ

对称规范下讨论朗道能级, 量子霍尔效应.pdf 
