秦岭文库(kunmingchi.com)你想要的内容这里独有!

2011年重点实验室年报.pdf

从不后悔分手94 页 13.619 MB下载文档
2011年重点实验室年报.pdf2011年重点实验室年报.pdf2011年重点实验室年报.pdf2011年重点实验室年报.pdf2011年重点实验室年报.pdf2011年重点实验室年报.pdf
当前文档共94页 下载后继续阅读

2011年重点实验室年报.pdf

中国科学院植物种质创新与特色农业 重点实验室 Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences 2011 年报 Annual Report 中国科学院植物种质创新与特色农业 重点实验室 2011 年报 目 录 一、基本信息................................................................................... 1 二、实验室研究方向和发展目标 ................................................... 2 三、工作进展................................................................................... 4 (一)特色农业资源植物保育原理 ......................................... 4 (二)特色农业资源植物优质和抗性性状的生物学基础...... 8 (三)特色农业资源植物的种质创新和可持续利用 ........... 13 四、科研产出................................................................................. 23 五、人员信息................................................................................. 23 1. 队伍建设 ............................................................................ 23 2. 研究生培养情况 ................................................................ 23 六、合作与交流 ............................................................................. 23 1. 非洲生物多样性合作研究进展顺利 ................................ 24 2. 年度学术调研活动顺利开展 ............................................ 24 3. 开放课题 ............................................................................ 25 七、仪器设备................................................................................. 25 八、2011 年度大事记 .................................................................... 25 九、附录......................................................................................... 28 附录一 在研项目 ................................................................... 28 附录二 科研产出 ................................................................... 34 附录三 人员信息 ................................................................... 42 附录四 人才培养 ................................................................... 47 附录五 合作交流 ................................................................... 50 附录六 仪器设备 ................................................................... 54 附录七 论文选编 ................................................................... 55 中国科学院植物种质创新与特色农业重点实验室 2011 年报 一、基本信息 实验室中文名称:中国科学院植物种质创新与特色农业重点实验室 实验室英文名称:Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences 实验室代码:2009DP173234 依托单位:中国科学院武汉植物园 实验室主任:李绍华 实验室学术委员会主任:邓秀新 通讯地址:湖北省武汉市 磨山中国科学院武汉植物园 邮编:430074 实验室秘书:周玲 联系电话:027-87510562 传真:027-87510670 E-MAIL:zhouling@wbgcas.cn 网址:http://pg.wbgcas.cn/ 学科与学位点: 学科 1 学科 2 学科 3 名称 代码 名称 代码 学科分类 生物学 0710 林学 0907 硕士点 植物学 071001 博士点 植物学 071001 博士后站 生物学 0710 园林植物与观 赏园艺 名称 代码 090706 研究性质 √应用基础研究 □基础研究 □ 归口领域 □化学 □数理 □地学 √ □生命科学 □医学科学 □信息 □材料 □工程 □社会公益性研究 □高技术研发 1 中国科学院植物种质创新与特色农业重点实验室 2011 年报 二、实验室研究方向和发展目标 中国科学院植物种质创新与特色农业重点实验室于2010年1月由中国科学院 批准设立,依托单位为中国科学院武汉植物园,5月15日正式挂牌成立。现任学 术委员会主任为邓秀新院士,实验室主任为李绍华研究员。 实验室定位:面向国家特色农业植物资源收集保护与可持续利用需求,立足 于园林园艺经济植物、能源植物、药用植物、水生经济植物等特色农业资源种质 创新与开发利用,系统研究植物濒危机制与保育原理、关键类群的系统发育重建、 谱系地理与分子进化,致力于植物资源评价与功能基因发掘、种质创新与新品种 培育、功能化合物开发与产业化研究及技术创新,为我国特色农业的快速可持续 发展提供理论与技术支撑。 研究方向: 1.特色农业资源植物保育原理:特色农业植物资源遗传评价、核心种质和 相应指纹图谱的建立、种质资源迁地保育原理;重要特色农业经济植物的系统发 育与保育基因组学;重要农业植物资源遗传多样性分布格局、基因流动态和适应 性进化。围绕资源保育与开发利用的共性机理,为特色农业资源植物可持续利用 提供理论基础和关键技术支撑。 2.特色农业资源植物优质和抗性性状的生物学基础:特色农业资源植物优 良品质和特异抗性/耐性的生理生化基础;特种资源植物次生代谢的分子机制; 优良品质、特异抗性/耐性相关的重要基因的克隆和生物学功能;重要功能基因 的分子标签或紧密连锁分子标记的开发。针对特有的优良品质和抗性/耐性深入 开展应用基础研究,阐明其分子和生理生化机制,并为这些优良性状向大田作物 的转移提供基因和分子标记资源。 3.特色农业资源植物的种质创新和可持续利用:研究特色资源植物的育种、 繁殖、栽培和综合开发利用的技术体系,为特种资源植物的可持续利用提供优良 种苗和相应的技术保障。重点培育适应性强并具有自主知识产权的特色资源作物 新品种;特色资源植物的高效繁殖和转基因技术;特种资源植物的优质高产和绿 色生态栽培技术体系。 发展目标:基于资源植物学、遗传学、基因组学及蛋白组学等学科的原理、 研究方法与发展趋势,围绕国家农业产业可持续发展的战略需求,遵循资源收集 保护、科学研究与开发利用的“3R 模式”,开展特色园艺植物、能源植物、药用 植物、水生经济植物等特色农业资源植物种质资源保护与可持续利用的研究,取 得具有国际影响的原创性和前瞻性研究成果,育成具自主知识产权的特色农作物 新品种,促进我国特色农业科学与产业的发展。培养一批高层次人才,建成我国 特色农业资源植物种质资源保护与可持续利用研究中心。通过 5-10 年的努力, 争取把实验室建设成为国家重点实验室。 2 中国科学院植物种质创新与特色农业重点实验室 2011 年报 学科布置: 序 号 研究单元 学术带 研 头人 1 水分胁迫生物学 产祝龙 2 草坪种质资源学 傅金民 3 果树分子育种学 韩月彭 4 植物保育遗传学 黄宏文 5 系统与进化植物学 李建强 究 方 向 植物抗水分胁迫的分子机制 草坪草种质资源评价与种质创新;草坪草逆境分子生 理代谢机制;特殊生境草本植物的选育与应用 桃等重要果树果实品质性状形成的分子机理;果树果 实品质性状的分子设计育种 猕猴桃遗传资源的收集与评价研究;植物的濒危机制 和保育原理研究;猕猴桃特异资源发掘及育种改良 重要关键植物类群的分类学、系统发育和适应性进化 葡萄种质果实品质特点及遗传规律;葡萄抗逆和果实 6 园艺作物生物学 李绍华 品质形成的调控机制及其基因的挖掘;转基因改良葡 萄果实品质及抗性 经济微藻(螺旋藻、红球藻等)优良藻种选育和工业 7 植物生物技术 李夜光 化生产关键技术优化研究;能源微藻资源收集、优良 藻种选育和大规模培养技术研究;微藻分类学、系统 学研究 能源植物种质资源收集、评价与新品种培育;植物比 8 植物应用基因组学 彭俊华 较基因组学;植物分子遗传学;作物野生资源重要基 因挖掘 9 种群遗传学 王 艇 裸子植物 rbcL 分子进化;重要植物功能基因资源的挖 掘 特种药用植物资源的收集、评价和可持续开发利用; 10 比较功能基因组学 王 瑛 药用植物次生代谢的分子调控机制;跨物种生物信息 学数据挖掘 11 资源植物繁殖生物学 杨平仿 植物有性生殖及种子形成机制;植物种子休眠及萌发 机理 12 天然产物合成生物学 章焰生 资源植物药用化学品质特征及合成调控;资源植物药 用化合物的生物合成及关键基因的挖掘 3 中国科学院植物种质创新与特色农业重点实验室 2011 年报 三、工作进展 本年度在研科研课题共 105 项,总经费 8081.4 万元(见附录一),其中 2011 年新增课题 39 项, 新增科研经费 3549.3 万元。在研课题包含: 973 项目 2项 国家重大专项 6项 国家科技支撑计划项目 1项 行业重大专项 4项 国家基金重点项目 1项 国家自然科学基金面上和青年基金项目 18 项 其他国家任务 1项 国际合作项目 5项 中科院创新专项和院专项 23 项 研究所自选项目 11 项 其他横向委托项目 33 项 2011 年度获国家自然科学基金资助项目(2012 年开始执行)13 项,其中重 点项目 1 项,面上项目 4 项,青年科学基金项目 8 项,资助经费总额 715 万元, 资助项目数较 2010 年增加 2 项,资助经费总额增加 257 万元。 (一)特色农业资源植物保育原理 1. 秤锤树濒危机制研究 生境片断化是造成植物濒危或者灭绝的主要原因。采用微卫星标记对狭果秤 锤树残缺居群不同生活史阶段植株的遗传多样性、基因流以及空间遗传结构进行 了研究,研究发现生境片断化并没有造成狭果秤锤树居群的遗传多样性下降,然 而不同生活史阶段植株均存在显著的空间遗传结构以及有限的基因流,因此对于 长寿命木本植物而言,生境片断化在很短的世代内并不一定会导致濒危植物的遗 传多样性下降;然而,有限的基因流以及较小的居群大小容易引发片断化居群出 现近交衰退。研究结果对于指导濒危植物秤锤树的迁地和就地保护具有重要的理 论价值。 4 中国科学院植物种质创新与特色农业重点实验室 2011 年报 成年个体(a),幼树(b),幼苗(c)及全体植株(d) 不同距离等级内个体亲缘关系分布图 虚线表示 95%的置信区上下限 2. NAC 基因的系统进化学研究 NAC基因是植物中重要的、与逆境耐性相关的基因家族,我们克隆测序了 300多份野生二粒小麦基因型中NAC基因家族的NAM-B1,开展NAC基因的进化 与等位变异研究。系统发育分析表明,NAC蛋白包括21个亚家族,其中大多拥 有高度保守的非NAC基序。NAC蛋白起源于4亿多年前植物由水生向陆生过渡时 期,而可能在石松类植物与维管束植物分裂后随同植物向复杂有机体分化而扩 张。 基于最大似然分析的 497 种 NAC 蛋白序列的无根进化树 5 中国科学院植物种质创新与特色农业重点实验室 2011 年报 3. 鹅掌楸有性生殖过程研究 利用蛋白质组学策略,研究了鹅掌楸成熟雌蕊授粉的蛋白动态表达模式,获 得了鹅掌楸成熟雌蕊授粉前后蛋白差异表达谱。在双向电泳图的 72 个差异表达 蛋白点中包括 38 个上调表达及 34 个下调表达。经过质谱鉴定和蛋白质功能分类 分析,发现授粉前后与代谢相关类蛋白表达变化较大,说明在授粉前后,柱头细 胞发生大量物质和能量代谢;同时发现授粉后参与氧化还原反应类的蛋白表达量 上调,说明受精后柱头细胞内发生大量维持自身活性氧动态平衡的反应。上述研 究为进一步寻找某些对雌蕊执行正常生理功能具有重要决定作用的蛋白质,进而 揭示雌蕊与花粉互作的机制奠定基础。 利用高通量 RNA 测序技术,构建鹅掌楸 microRNA 文库,获得了鹅掌楸花 器官的 miRNA 表达信息。通过与数据库中其他物种对比分析,鉴定得到 93 个 保守 microRNA 和 2 个鹅掌楸特有的新 microRNA。组织差异表达分析说明一些 miRNA 可能在鹅掌楸有性生殖过程中具有关键作用。 上述研究结果将有助于更进一步揭示鹅掌楸有性生殖过程的分子机理。 鹅掌楸雌蕊受精前后蛋白质表达图谱 A : 鹅掌楸雌蕊受精后蛋白表达图谱;B: 鹅掌楸雌蕊受精前蛋白表达图谱。图中 U+数字表 示受精后上调表达的蛋白点;D+数字表示受精后下调表达的蛋白点。红色字体表示未得到 质谱鉴定结果的差异表达蛋白点;黑色字体表示得到质谱鉴定结果的差异表达的蛋白点。 6 中国科学院植物种质创新与特色农业重点实验室 2011 年报 鹅掌楸花组织中鉴定得到的部分 miRNA 及其组织表达差异 SF,MF,PE,SE,AN,UP,PP 分别表示花(小),花(中),花瓣,萼片,雄蕊,柱头(未 受精)和受精柱头。 4. 裸子植物 rbcL 分子进化 利用“宽松分子钟”模型,在时间尺度下分析了裸子植物 rbcL 基因的适应性 进化和共进化;发现伴随大气 CO2 浓度的变化,RbcL 亚基的部分位点受到持续 正选择,其中一些位点位于 Rubisco 酶大、小亚基的接触面上,而另一些位点则 位于该酶与其活化酶的接触面附近;RbcL 亚基可借助不同氨基酸位点的共进化 而发生适应性进化。这些结果不仅对理解 Rubisco 酶与环境因子的相互作用具有 重要意义,而且还有助于揭示同 Rubisco 酶相关的其他功能网络的进化方式。 7 中国科学院植物种质创新与特色农业重点实验室 2011 年报 RbcL 亚基上的正选择位点 RbcL 亚基的共进化网络 (二)特色农业资源植物优质和抗性性状的生物学基础 1. 葡萄糖、酸、色素的遗传规律研究 研究了四倍体‘巨峰’和二倍体‘玫瑰香’杂交群体糖、酸、色素的遗传规律, 发现了葡萄果实中糖含量随倍性增加而增高,且四倍体显著高于二倍体;而有机 酸含量随倍性升高而降低和花色苷含量显著高于亲中值。所有倍性的单株果实 糖、酸、色素含量均呈偏正态分布,但多倍体后代的糖、色素含量变异范围远远 大于二倍体后代,因此从多倍体单株中具有更大的选择高糖和高色素含量品种的 潜力。 8 中国科学院植物种质创新与特色农业重点实验室 2011 年报 2. 葡萄种质的基因组重测序 完成了 29 个葡萄品种的基因组重测序,鉴定了 73 个与糖代谢及 65 个与糖 运输的相关基因, 通过比较野生和栽培品种间基因 DNA 序列上 SNPs/InDel 差 别,找到了 3 个在栽培种中 SNPs/InDel 极少而在野生种变异较大的基因。这 3 个基因分别果糖激酶和磷酸果糖激酶。这三个受到明显的人工选择的基因很有可 与栽培品种中较高糖含量密切相关。 3. 葡萄白藜芦醇形成的调控机制 筛选获得了一个调控葡萄果实白藜芦醇合成的候选转录因子 Vmyb14,通过 对其在葡萄不同组织表达模式分析,肯定了其表达量与白藜芦醇合成关键结构基 因及白藜芦醇含量紧密相关;通过在葡萄叶片中超量表达该转录因子,初步表明 了该转录因子能有效调控葡萄白藜芦醇的合成。 4. 构建葡萄高密度遗传图谱 以 Z180×北红杂交群体为研究材料,利用简化基因组重测序技术,构建了 一张葡萄含 1646 个共显性 SNP 分子标记的高密度遗传图谱。对该遗传图谱和黑 比诺葡萄参考基因组进行比较作图表明,大部分 SNP 标记在遗传图谱和物理图 谱上具有很好的共线性。该图谱将进一步用于葡萄基因组结构特点、进化、果实 关键品质性状 QTL 定位等分析中。 150 150 150 Chr01 150 150 Chr03 Chr02 Chr05 Chr04 100 100 100 100 100 50 50 50 50 50 0 0 0 0 0 150 10 20 30 0 150 Chr06 10 20 30 0 150 Chr07 10 20 30 0 0 150 Chr08 10 20 30 0 150 Chr09 100 100 100 100 100 50 50 50 50 50 0 0 0 0 0 150 10 20 30 0 150 Chr11 10 20 30 0 150 Chr12 10 20 30 10 20 30 0 150 Chr14 100 100 100 100 100 50 50 50 50 50 0 0 0 0 0 150 10 20 30 0 150 Chr16 10 20 30 0 150 Chr17 10 20 30 100 100 100 100 50 50 50 50 0 0 0 0 0 10 20 30 0 10 20 30 0 10 20 30 30 10 20 30 20 30 Chr15 0 0 150 Chr18 20 0 0 150 Chr13 10 Chr10 10 20 30 Chr19 0 10 Female Male 0 10 20 30 Z180×北红遗传图谱与欧亚种葡萄“黑比诺”物理图谱共线性比较分析图 X 轴表示 SNP 标记在染色体上的位置,Y 轴表示 SNP 标记在对应遗传图谱上的位置 5. 构建苹果基因组连锁遗传图谱 分析了苹果基因组 SSR 重复序列特征,开发了苹果 G-SSR 标记 100 多个, 9 中国科学院植物种质创新与特色农业重点实验室 2011 年报 利用红玉/金冠 F1 分离群体构建了一张苹果基因组连锁遗传图谱,开展苹果糖酸 品质性状的 QTL 定位研究,在第 5、8 号染色体检测到与果糖、蔗糖和苹果酸 含量相关的 QTL(贡献率 13-15%) ,为苹果品质性状的改良提供了分子工具。 苹果基因组 SSR 重复序列 Repeat Dimer Trimer Type No. Repeat AC/CA 510 Tetramer AGGG/GGGA/GGAG/GAGG TG/GT 534 TCCC/CCCT/CCTC/CTCC 22 AG/GA 2009 ATGT/TGTA/GTAT/TATG 65 TC/CT 1934 TACA/ACAT/CATA/ATAC 77 AT/TA 3502 CCTT/CTTC/TTCC/TCCT 10 AAT/ATA/TAA 227 AATT/ATTA/TTAA/TAAT 34 TTA/TAT/ATT 212 others 95 AAC/ACA/CAA 1155 Pentamer AAAAT/AAATA/AATAA/ATAAA/TAAAA 66 TTG/TGT/GTT 1078 TTTTA/TTTAT/TTATT/TATTT/ATTTT 61 AAG/AGA/GAA 273 AAAAC/AAACA/AACAA/ACAAA/CAAAA 29 TTC/CTT/TCT 281 TTTTG/TTTGT/TGTTT/GTTTT 12 ACC/CCA/CAC 84 AACCG/CCGAA/CGAAC/GAACC 26 TGG/GGT/GTG 79 AAATC/AATCA/CAAAT 12 AGG/GGA/GAG 129 CCGTC/CGTCC/GTCCC/TCCCG 22 TCC/CCT/CTC 106 GACGG/ACGGG/GGGAC/GGACG 13 ACG/CGA/GAC 12 GTTCG/TTCGG/TCGGT 17 TGC/GCT/CTG 32 AAAAG/AAAGA/AAGAA/AGAAA/GAAAA 15 AGC/CAG/GCA 39 TTTTC/TTTCT/TTCTT/TCTTT/CTTTT 16 TCG/GTC 15 Others 234 ATG/TGA/GAT 54 ATC/TCA/CAT 51 Others 32 Tetramer AAAC/AACA/CAAA TTTG/ TTGT/GTTT/TGTT AAAT/TAAA/ATAA/ AATA TTTA/ATTT/TATT/T TAT AAAG/AAGA/AGAA /GAAA TTTC/TTCT/ TCTT/CTTT 24 16 101 107 25 Hexamer Type AAAAAT/AAAATA/AAATAA/AATAAA/ATAA AA/TAAAAA TTTTTA/TTTTAT/TTTATT/TTATTT/TATTTT/ ATTTTT TTTTGT/TTTGTT/TGTTTT/TTTTTG AAAAAC/AAAACA/AAACAA/AACAAA/CAA AAA AAAAAG/AAAAGA/AGAAAA/GAAAAA TTTTCT/TTTCTT/TTCTTT/TCTTTT/CTTTTT/T TTTTC GAGAGG/AGAGGG/GAGGGA/GGGAGA/GGA GAG Others 29 10 No. 11 52 53 11 15 19 19 12 556 中国科学院植物种质创新与特色农业重点实验室 2011 年报 苹果第 7 号遗传连锁图谱(F:红玉,M:金冠) 6. 果树果实淀粉合成的分子机理 克隆了苹果、桃和柑橘颗粒结合淀粉合成酶(GBSS)基因家族的所有成员, 揭示了植物 GBSS 基因的扩增与全基因组复制有关,单子叶禾本科植物 GBSS 基因可分为 GBSSI 和 GBSSII 两个家族,GBSSI 在胚乳中表达,而 GBSSII 在 叶片、茎秆等其它器官中表达;双子叶植物不包含 GBSSI 家族,只有 GBSSII 单个家族,且其表达特征与单子叶植物 GBSSII 相似,这可能与双子叶植物胚 乳大多均已退化有关,该研究为利用不同物种间 GBSS 基因进行作物淀粉性状 的遗传改良提供了理论依据。 单、双子叶植物 GBSS 基因的进化特征比较 11 中国科学院植物种质创新与特色农业重点实验室 2011 年报 7. 黑麦草耐盐基因的挖掘 以耐盐的黑麦草种质为材料,通过 SSH 技术构建了盐胁迫下叶片的差减 cDNA 文库,经筛选获得了 380 个可能与耐盐相关的候选基因 cDNA 克隆,对这 些克隆进行了测序,发现其中 268 个克隆与已知功能基因具有同源性(GenBank accession No. JF747336 - JF747500),另外 112 个克隆找不到与之同源的基因,或 仅与未知功能蛋白基因同源(GenBank accession No.JQ283044 - JQ283102)。根 据生物信息学分析,所获得的基因根据所编码的蛋白功能可分为 11 个类别,包 括信号转导、渗透调节物质、蛋白代谢、转录、胁迫相关、能量转移、解毒相关、 细胞运输、质体/线粒体基因组、一般代谢、未知功能蛋白等类型。利用 RT-PCR 技术,对这些基因的差异表达进行了验证,发现大部分基因受盐胁迫的诱导,上 述发掘出的可能与耐盐有关的黑麦草特异基因,为进一步深入研究和高效发掘黑 麦草优异耐盐基因奠定了基础,进而为植物转基因抗逆育种提供基因材料。 盐胁迫下黑麦草差异表达基因的功能类别及比例 RT-PCR 分析SSH文库中筛选出的基因在盐处理和对照黑麦草中的表达情况 eEFIA(s) 为内参基因,1和3为对照植株,2为 255mM NaCl-处理24h 的植株,4为255mM NaCl-处理48h 的植株 12 中国科学院植物种质创新与特色农业重点实验室 2011 年报 对上述筛选出的部分可能与黑麦草耐盐相关的基因cDNA片段设计引物,利 用RACE技术,对基因进行全长cDNA的PCR扩增、克隆、测序与分析。成功获 得了与糖代谢、抗氧化、脯氨酸合成等过程有关的10余个基因的全长cDNA序列, 对cDNA序列进行了同源性比对、序列结构分析,并对基因编码的蛋白产物进行 预测,对一些基因的表达特征进行了初步分析。这些基因全长cDNA序列的获得 为进一步研究基因的结构与功能,理解黑麦草耐受盐胁迫的分子机理奠定了基 础。 基因全长cDNA序列特征及所推测的蛋白产物的分子量与等电点 (三)特色农业资源植物的种质创新和可持续利用 1. 药用植物 z 枸杞 本年度审定了一个枸杞国家级良种‘中科绿川 1 号’ 。该品种与其他枸杞品 种相比,具有明显的植物学外观特征:一是枝条皮色表现为灰白色,二是果实形 状为近圆形或梨形。分子标记检测表明, ‘中科绿川 1 号’枸杞与亲本‘宁杞 1 号’和其他主栽品种具有明显的遗传差异。从 2007 年开始,课题组以主栽品种 ‘宁杞 4 号’为对照品种,在内蒙古、宁夏、新疆、青海进行了区域对比试验。 试验表明‘中科绿川 1 号’枸杞植株早期生长量大,树势强,早产性好;抗病虫 害能力强,尤其对于枸杞蚜虫、黑果病有较强的抗性;花期比对照早 7 天左右, 花量大且坐果率高;果蒂易脱落(果口松),手工采摘效率高,适宜于机械采摘; 果肉厚,种子少,适于制汁;干果偏圆,易过筛分级处理,混等果中特优级比例 高;干果和鲜果颜色鲜红,总多糖和总黄酮含量高。 13 中国科学院植物种质创新与特色农业重点实验室 2011 年报 在枸杞的基础研究方面,建立了快速提取和定量分析活性成分(多糖、类胡 萝素、类黄酮)的方法;完成了宁夏枸杞以及近缘物种的基因组大小评估和染色 体核型分析;从 EST 序列中开发了约 2000 个 SSR 位点,并分析得到了枸杞中单 拷贝的基因序列;通过 EST 序列分析了枸杞基因组和茄科模式物种的差异;启 动了枸杞中与果实功能成分(类黄酮和类胡萝卜素)代谢相关基因的克隆和功能 Contents of rutin 研究。为枸杞的全基因组测序奠定了坚实的基础。 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Jl Jh Ls Sh Ld Zn Nh Z4 Z3 Cultivated varieties and wild populations Z2 9 8 7 6 5 4 3 2 Individuals 1 Z1 枸杞新品种‘中科绿川 1 号’和主 栽培和野生宁夏枸杞不同居群和不同 栽品种‘宁杞 4 号’的果实比较 个体的叶片中芦丁含量的比较分析 野生枸杞和宁夏枸杞嫩叶中多酚类组分的 HPLC 检测结果 1:芦丁;2:槲皮素;3:山奈酚;4:绿原酸;5:芹黄素-7-O-鼠李糖-乙酰基 葡萄糖;6:制备的单体物 z 苍耳 采用 LC-MS 分析技术,研究了药用化合物“苍耳素”在资源植物苍耳中不 同组织(根、老茎、嫩茎、老叶、嫩叶、花与种子)中的合成分布,发现苍耳素 在苍耳的嫩叶中合成较多,而苍耳的根、花与种子几乎没有苍耳素的分布,茎中 14 中国科学院植物种质创新与特色农业重点实验室 2011 年报 有少量的苍耳素存在,进一步研究发现苍耳素是由苍耳组织表面的腺体细胞中合 成,实验室目前已经成功地从苍耳植物嫩叶表面分离了苍耳的腺体细胞,以备下 一步的基因挖掘研究工作。 14 苍耳素含量(mg/g鲜重) 12 10 8 氯仿浸提 残渣提取 6 4 2 0 嫩叶 老叶 嫩茎 老茎 花 种苞 根 苍耳素在苍耳植物中的空间合成分布 从苍耳植物嫩叶表面分离的腺体细胞 z 葛 采用 RT-PCR 技术,以野葛的根为实验材料,建立了葛根的糖基转移酶基因 文库,发现其中某一种糖基转移酶基因在野葛的根中特异表达,且此基因受信号 分子茉莉酸甲酯诱导而上调表达,目前此基因的功能鉴定工作正在进行,上述研 究为进一步挖掘葛根素生物合成途径中关键糖基转移酶基因奠定了基础。 z 长春花 结合长春花 EST 文库的分析与 RACE-PCR 技术的应用,从药用植物长春花 中分离了药用化合物熊果酸合成途径中的关键三萜环化酶基因与 P450 基因,并 对这两种基因的功能进行了鉴定,上述研究为抗癌物质“熊果酸”的生物合成提 供了必需的基因资源。 15 中国科学院植物种质创新与特色农业重点实验室 2011 年报 O CrAS + HO HO 1 2 熊果酸合成途径中关键三萜合酶基因的功能鉴定 HO CYP716AL1 COOH HO Retention time 熊果酸合成途径中关键 P450 基因的功能鉴定 2. 能源植物 z 芒草 采用完全随机的区组设计将来自中国自然分布地区的 93 个种群的芒 (Miscanthus sinensis)、荻(Miscanthus sacchariflorus)和南荻(Miscanthus lutarioriparius)分别种植于内蒙、甘肃和武汉,每个居群种植 15 个不同的基因 型,目的是对能源作物芒草进行变异性与适应性评价。种植园选在三个地点,内 蒙和甘肃代表了北方温带草原与黄土高原土地,这里有大量的边际土地和退化土 地,通过评价其在各个地方的生长性状(株高、茎粗、分蘖数、开花时间、生物 量),发现芒属植物在种间和种内具有较高水平的遗传变异,为进一步优良个体 的选择提供了丰富的基因型。比如,荻的北方种群由于耐寒性强,在北部样地上 定植率(establishment rate)最高。而原产于中国中部的特有种------南荻,不仅在三 16 中国科学院植物种质创新与特色农业重点实验室 2011 年报 个物种中生物量最高,而且在黄土高原样地的生物量要高于在自然栖息地附近的 武汉样地。这些结果表明,野生芒属植物拥有充分丰富的遗传变异,可以获得重 要的经济性状,能够在比其原产地更冷、更旱的地区定植、生产。总之,芒属植 物所具有的自然变异与生态适应性,可以作为大有前途的第二代能源作物。 三个样地所种植的物种的采样点 三角△:荻;菱形◇:芒;圆圈 ○:南荻。红色方块□表示三个 种植地。XN:内蒙古锡林浩特; QG:甘肃庆阳;JH:湖北江夏 2010 年整个生长季各个物种的株高生长曲线和生物量 a. 从 2010 年 3 月到 10 月底,每两周在甘肃庆阳和湖北江夏各测一次其生长性状,实 心圆、三角及菱形为在甘肃庆阳所测时间点株高,而空心圆、三角及菱形为湖北江夏所 测时间点株高,生长曲线用 Logistic curves 拟合; b. 在生长季末,两地三个物种的平均生物量。其中 Sa 为荻,Si 为芒,Lu 为南荻。 17 中国科学院植物种质创新与特色农业重点实验室 2011 年报 调查了芒草种质资源的单株生物学产量,变异范围为 0.01-3.85 Kg/株,在芒 田建成初期,其生物学产量呈现上升趋势,生物学产量作为重要的能源性状,原 生境的地理环境因子、抽穗期、株高、分蘖数均构成了生物学产量的子因素。 100 2010 2009 90 80 基因型数目 70 60 50 40 30 20 10 2001- 640-1000 601-640 1001-2000 单株生物学产量(g/株) 561-600 521-560 481-520 441-480 401-440 361-400 321-360 281-320 241-280 201-240 161-200 121-160 81-120 41-80 0-40 0 中国芒单株生物学产量频率分布图 对不同基因型芒草的抗旱性进行了鉴定,对愈伤苗进行干旱复水实验,复水 后的不同基因型的成活率存在明显的差异,可能与原生境的生态因子密切相关, 来自年降水量很低的北方基因型抗旱性较好,表明这些芒草种质中蕴含抗旱基因 资源。 基于 SSR 在禾本科物种中的可转移性,从大麦、小麦、高粱、水稻及二穗 短柄草等物种中开发可供中国芒研究的 SSR 分子标记 350 对,根据各物种的 gSSR 在芒草中的可转移率,揭示了这些物种与中国芒的亲缘关系,高粱>二穗短 柄草>水稻>大麦>小麦。 不同基因型中国芒苗期抗旱表现 注释:中国芒原生境信息 18 中国科学院植物种质创新与特色农业重点实验室 2011 年报 PMS 81: 湖北省宜昌市 30°51.832N, 111°21.653E, 145m; PMS163: 山西省沁水县 35°43.358N, 112°41.267E, 941m; PMS165: 河北省邢台市 37°20.214N, 114°16.784E, 345m。 z 油桐 2011 年 10 月到湖北、安徽、浙江、福建、广东、湖南、江西等省份, 野外采集油桐 214 份和皱桐 28 份,进一步充实了现有的油桐种质资源库,为 种质资源评价和新品种选育奠定了基础。 通过对 Fad2 基因的等位变异研究显示该基因存在两种单倍型(由该基因 编码区存在的一个 SNP 导致),且与桐油中桐酸的含量呈显著相关性。为了 进一步验证该基因的功能,我们构建了该基因的两种等位变异形式的超表达 载体,转化了拟南芥,将通过分析转基因拟南芥中的桐酸含量来验证该基因 的等位变异所导致的功能差异。此外已构建了富含 SSR 序列的油桐基因组文 库,并设计了油桐 SSR 引物。 2011 年油桐种质资源采集地理分布 19 中国科学院植物种质创新与特色农业重点实验室 2011 年报 野外采集桐果的部分照片 3. 微藻 产油微藻资源收集和优良藻种筛选 在我国内陆水体采集淡水标本 500 余号,分离藻种 150 余株,筛选出油脂含 量 30%以上的藻种 9 株,其中 2 株(小球藻、栅藻)油脂含量超过 40%。在室 外自然光照和温度下小规模培养(30 升),小球藻生物质产量 0.725 g/L, 总脂含 量 41.2%,栅藻生物质产量 0.74g/L, 总脂含量 31.5%, 是 2 株具有产油潜力的藻 种,为微藻生物柴油研发提供了优良种源。 产油微藻的筛选及分子鉴定 利用通气培养系统,对 10 株经过初步生长筛选的微藻进行培养,筛选具有 产油潜力的优良藻种。其中藻株 HY-6 总脂单位体积产率最高,是一株具有潜力 的产油微藻。运用形态学特征和 18S rDNA 及 ITS 系统学分析相结合的方法对藻 种 HY-6 进行分类鉴定。依据形态学特征,初步判断该藻株可能属于小球藻属 (Chlorella)或拟小球藻属(Parachlorella);18S rDNA 及 ITS 的系统学分析表 明 HY-6 与凯氏拟小球藻(Parachlorella kessleri)的亲缘关系较近,与小球藻属 分为两个进化支,因此将其鉴定为凯氏拟小球藻(P. kessleri) 。 20 中国科学院植物种质创新与特色农业重点实验室 2011 年报 基于 18S rDNA 部分序列用邻接法构建的系统树 4. 萝卜 对在大田发现的一株雄性不育萝卜进行了仔细的组织学观察,并进行了大量 的杂交试验,研究结果表明该雄性不育为一种新的细胞质雄性不育或核雄性不育 类型。新雄性不育类型的获得为十字花科植物杂种优势育种提供了宝贵的遗传资 源。 萝卜雄性不育花药组织学观察 a. 正常雄性可育的花;b. 雄性不育的花;e. 可育花药的半薄切片观察;f.不育 花药的半薄切片观察 21 中国科学院植物种质创新与特色农业重点实验室 2011 年报 5. 小麦 利用覆盖全基因组的 1536 个 SNP 标记,完成了对野生二粒小麦的基因型 标定工作,揭示了野生二粒小麦较高的遗传多样性。在选取的 1536 个 SNP 标记 中,769 个分布在染色体组 A 上,602 个分布在染色体组 B 上;单条染色体上分 布的 SNPs 数为 67(3B 染色体)-- 135(7A 染色体)。基于上述的 1536 个 SNPs, 对于来自于以色列、土耳其、黎巴嫩、叙利亚等国家的 515 份野生二粒小麦进行 了遗传多样性分析,发现:Gene diversity 变化范围 0.1329-0.2113,平均值为 0.1625;PIC 值变化范围 0.112-0.178,平均 PIC 值为 0.136。表明,筛选得到的 SNPs 标记具有较高的区分度,能有效地区分不同基因型。 SNP 数据及相关遗传参数分析 Chromosome SNP mark ers Polymorphic SNP markers Percentage of polymorphic SNP markers (%) Gene diversi ty 1A 114 106 92.98 0.1361 0.116 2A 98 92 93.88 0.1627 0.137 3A 98 89 90.82 0.1642 0.137 4A 124 116 93.55 0.1572 0.131 5A 85 79 92.94 0.1356 0.114 6A 125 106 84.80 0.1521 0.126 7A 135 124 91.85 0.1344 0.112 1B 100 94 94.00 0.2008 0.169 2B 88 80 90.91 0.1774 0.147 3B 67 63 94.03 0.1756 0.147 4B 75 68 90.67 0.1555 0.131 5B 76 70 92.11 0.1329 0.113 6B 105 98 93.33 0.2113 0.178 7B 102 94 92.16 0.1652 0.138 A 769 703 91.42 0.1498 0.125 B 602 557 92.52 0.1788 0.150 91.97 0.1625 0.136 PIC Genome Mean 22 中国科学院植物种质创新与特色农业重点实验室 2011 年报 四、科研产出 本年度实验室共发表科研论文 49 篇(见附录二) ,其中 SCI 论文 34 篇,以 重点实验室为第一作者/共同第一作者或通讯作者的 SCI 论文 31 篇(含 Top30% 14 篇,Top10% 4 篇);主编或参与编写的论著 1 部; “五种特种蔬菜的品种选育、 栽培技术和应用研究”获武汉市科技进步三等奖;省院省校合作项目“红球藻产 业化生产及产品质量标准研究”通过云南省科技厅组织的成果鉴定;授权专利 6 项,申请专利 9 项。 五、人员信息 1. 队伍建设 重点实验室现有固定人员 56 人(见附录三),包括研究员 16 人(其中 9 人 入选中国科学院“百人计划” ) ,副研究员 13 人,助理研究员 22 人,获博士学 位的人数占固定人员总数的 79%。 人才引进: 中科院“百人计划”入选者:产祝龙 创新副高:辛海平 青年博士: 陈良、谷超、王鲁、何冬丽、王坤、陈方方、王艳平 2. 研究生培养情况 现有博士生导师 11 人,硕士生导师 21 人。在读研究生共 92 人(见附录四) , 其中博士 39 人,硕士 53 人。本年度毕业研究生 11 人,其中博士 3 人,硕士 8 人。目前在站博士后研究人员 2 人。研究生培养取得的成绩: 王艇研究员指导的博士研究生森林获昌华奖学金优秀奖; 11 名研究生获院“优秀学生干部”或“三好学生”荣誉称号; 3 名研究生获武汉教育基地“优秀毕业生”荣誉称号。 六、合作与交流 通过建立国际合作项目及聘请外籍研究员等,大力开拓广泛的国际合作渠 道,提高研究水平。实验室目前与美国康奈尔大学、美国伊利诺伊大学、美国肯 塔基大学、美国克莱姆森大学、法国波尔多大学、以色列海法大学、加拿大 Bioriginal Food & Science Corp、澳大利亚昆士兰大学等国外高校或科研院所建立 了长期合作关系。本年度共有科研人员 11 人次赴国外参加国际会议或开展合作 23 中国科学院植物种质创新与特色农业重点实验室 2011 年报 交流。邀请 11 人次前来实验室进行学术交流,其中国外单位专家 10 人次,国内 单位专家 1 人次。邀请国内外专家来室讲学 17 人次,其中来自国外单位的专家 13 人次,来自国内单位专家 4 人次(见附录五)。 1. 非洲生物多样性合作研究进展顺利 在前期开展的对非洲有关地区的生物多样性资源多次联合考察基础上,武汉 植物园非洲生物多样性研究中心起步良好。2011 年,受院国际合作局、生物局 等支持,对非工作取得新的进展。1 月 18 日-30 日,武汉植物园组织植物研究所、 上海辰山植物园、昆明植物研究所等单位的 10 名科研人员,联合对肯尼亚 Kakamega 热带雨林区、Nakuru 稀树草原(Savanna)、维多利亚湖区植被以及 肯尼亚中央地区的森林植被进行了首次野外考察。4 月 6 日-17 日,武汉植物园 主办了“东非生物多样性与保护生物学” 培训班,实验室保护生物学、植物分 子生物学、植物基因组学和蛋白质组学等领域的专家学者对来自中、东部非洲肯 尼亚、坦桑尼亚、埃塞俄比亚、赞比亚、卢旺达和马拉维等 6 个国家的 22 名科 研人员进行了培训。参训学员高度评价了此次培训,《中国-非洲》杂志专题报 道了这次培训在非洲国家引起的积极反响, 此次培训为中非合作研究的持续深 入打下了良好基础。8 月 15 日-25 日,武汉植物园代表团应邀访问了肯尼亚乔莫 • 肯 尼 亚 塔 农 业 与 技 术 大 学 ( Jomo Kenyatta University of Agriculture and Technology),双方续签了未来五年(2012-2016)的科技合作备忘录,同时还 就联合生态站以及 JKUAT 植物园的建设方案进行了磋商,一致通过了“JKUAT 植物园”和“中-肯联合生态研究站”的选址和初步设计方案,并就其功能、建 设规划和建成后的管理与维护进行了协商,同时对中-肯“东非大裂谷生物多样 性第二次联合科学考察”的地区、时间和人员进行了安排。访肯期间,肯尼亚高 等教育与科技部常任秘书长克里斯普斯·基安巴接见了武汉植物园代表团成员并 就进一步合作提出了建议。12 月 3 日- 4 日,肯尼亚高等教育与科技部部长玛格 丽特·卡玛尔率肯尼亚教育与科技代表团访问武汉植物园,双方就人才培养、科 研协作、科研平台建设以及学者互访等有关问题进行了洽谈。2011 年对非生物 多样性保护与研究的合作进展标志着我园生物资源收集保护战略迈上一个新台 阶。 2. 年度学术调研活动顺利开展 11 月 17 日-21 日,重点实验室主任李绍华研究员带领相关学科组组长,前 往中国科学院遗传与发育生物学研究所和中国科学院植物研究所等单位,开展年 度学术调研活动。遗传所植物细胞与染色体工程国家重点实验室主任凌宏清、分 子农业生物学研究中心主任王道文等,植物所副所长种康、中国科学院植物分子 24 中国科学院植物种质创新与特色农业重点实验室 2011 年报 生理学重点实验室主任刘春明和资源植物研发重点实验室主任桑涛等热情接待 了调研组一行。调研活动中,双方重点实验室主任首先分别就研究方向和研究队 伍做了总体介绍,随后双方成员也介绍了各自的研究兴趣,学科组目前开展的研 究工作和下一步研究计划,最后双方就科研项目合作、平台建设、研究生培养等 方面进行了深入探讨,并就重点实验室评估等问题进行了深入交流。此次学术调 研活动的顺利开展,加强了重点实验室与其他兄弟单位的相互了解,增进了双方 成员间的感情,有力地促进了相互间的交流合作。 3. 开放课题 目前实验室在研的开放课题共 8 项,每项课题支持 3 万元。 七、仪器设备 按照科学院有关实验室公共平台建设的要求,实验室高度重视现有平台的维 护与共享,本年度先后开支 50 万元用于购置较大型公共实验设备与设施,这些 设备和设施的添置将为实验室相关科研工作的开展提供更有利的保障。同时,本 实验室建设也得到了全园的极大支持。 另外,本园及实验室的平台建设得到科学院的大力支持,科学院支持购买的 气相色谱质谱联用仪、扫描电子显微镜、土壤碳通量系统、梯度气象监测系统和 涡动相关分析系统已于本年度陆续到位并投入使用。 目前,实验室 5 万元以上仪器设备共 55 台(套) ,设备总值 1400 余万元(见 附录六) 。 八、2011 年度大事记 1 月 22 日,武汉植物园就“十二五”期间药用植物研究的规划工作召开了专 题研讨会,凝练十二五药用植物研究的重点科学问题,探讨多学科交叉的团队合 作模式,推动药用植物的合作研究。 1 月 27 日,植物资源可持续利用中心获“中国科学院先进集体”荣誉称号。 4 月 6 日,来自中、东部非洲肯尼亚、坦桑尼亚、埃塞俄比亚、赞比亚、卢 旺达和马拉维等 6 个国家的 22 名科研人员组成的代表团抵达武汉植物园,参加 为期两周的植物生物多样性与保护的专业基础知识与技能的培训活动。 5 月 3 日,重点实验室举办首场学术交流会,相关学科组二、三年级的博士 研究生作了 11 场学术报告。 5 月 15 日,重点实验室召开第一届学术委员会第二次会议,依据 2010 年度 25 中国科学院植物种质创新与特色农业重点实验室 2011 年报 工作总结,委员们就重点实验室的科研问题凝练、人才队伍建设、科研平台建设 等方面提出了建议。 6 月 17 日,由中国科学院武汉植物园和云南绿 A 生物工程有限公司共同承 担的“红球藻产业化生产及产品质量标准研究” 项目顺利通过云南省科学技术 厅在昆明组织的项目验收和成果鉴定。 8 月 15 日-25 日,武汉植物园代表团应邀访问肯尼亚乔莫•肯尼亚塔农业与技 术大学,双方续签了未来五年(2012-2016)的科技合作备忘录,就双方在科技 合作研究和对肯人才培养方面达成了共识。访肯期间,肯尼亚高等教育与科技部 常任秘书长克里斯普斯·基安巴接见了武汉植物园代表团成员并就进一步合作提 出了建议。 8 月,姚小洪副研究员申报的“物种分布范围限制的遗传学分析-濒危植物鹅 掌揪遗传多样性的分布格局、基因流及适应性遗传分化”项目获中国科学院“生 命科学领域优秀青年科技专项”资助。 8 月,李绍华研究员申报的“葡萄种质资源抗旱寒评价及其抗性基因挖掘与 利用”项目获国家自然科学基金委重点项目资助。 9 月,彭俊华研究员作为 Co-PI 参与的项目"Quantifying Phenotypic and Genetic Diversity of Miscanthus sinensis as A Resource for Knowledge-Based Improvement of M. x giganteus (M. sinensis x M. sacchariflorus)" 获美国能源部和 农业部资助。 9 月 22 日,美国驻华大使夫人 Mrs. Mona Locke 访问重点实验室,美国国 家自然科学基金(NSF)驻京办事处主任 Dr. Emily Y. Ashworth 和 NSF 国际科学 与工程办东亚及太平洋项目主任 Dr. Nancy S. Sung 陪同。 9 月 28 日,重点实验室举行 2011 年第二场学术交流会,相关学科组二、三 年级硕士研究生作了 19 场学术报告。 10 月 21 日,植物资源可持续利用中心召开学术交流会,中心青年科研人员 作了 6 个专题报告,50 余名科研人员和研究生参加了会议。 10 月 22 日,王瑛研究员主持选育的‘中科绿川 1 号’枸杞品种顺利通过了 品种鉴定。 11 月 17 日-21 日,李绍华研究员带领相关学科组组长,前往中国科学院遗 传与发育生物学研究所和中国科学院植物研究所等单位,顺利开展了 2011 年度 学术调研活动。 26 中国科学院植物种质创新与特色农业重点实验室 2011 年报 11 月 24 日,重点实验室青年科研人员学术交流活动在湖北咸宁举行。 11 月,韩月彭、杨平仿和章焰生研究员获中国科学院 2011 年度 “引进国外 杰出人才”计划资助。 12 月 2 日,中科院院长白春礼在京会见了肯尼亚高等教育与科技部部长玛 格丽特·卡玛尔一行,就武汉植物园与肯尼亚乔莫·肯尼亚塔农业与科技大学在生 物多样性保护等领域开展的合作进行了富有成效的讨论。 12 月 3 日- 4 日,肯尼亚高等教育与科技部部长玛格丽特·卡玛尔率肯尼亚教 育与科技代表团访问武汉植物园,就生物多样性保护人才培养与科研协作、科研 平台建设以及学者互访等有关问题进行了深入讨论。 12 月 11 日,重点实验室举行第三场学术交流会,5 位学科组长汇报了学科 组研究方向,70 余名科研人员及研究生参加了会议。 27 中国科学院植物种质创新与特色农业重点实验室 2011 年报 九、附录 附录一 在研项目 1. 国际合作项目 序号 1 2 3 4 5 合计 来源 项目名称 意大利 结题时间 2005-8-1 2028-12-1 1000 黄宏文 2009-5-1 2011-12-31 18 李作洲 2010-1-1 2011-12-31 6.5 李志能 2010-5-31 2013-5-31 40 彭俊华 2010-12-1 2012-12-31 60 陈建军 -- -- -- 1124.5 -- 项目名称 开题日期 结题日期 2008-1-1 2012-12-29 60 李建强 2008-1-1 2011-12-30 200 袁 2008-12-1 2013-12-30 42 彭俊华 2010-5-1 2012-12-31 125 彭俊华 新品种拍卖 加拿大国际植物 营养研究所 经费 开题时间 (万元) 负责人 棉花钾效率基因型 差异的分子遗传机 理研究 瑞典国际基金 悬铃木花发育应用 (IFS) 研究 美国国家科学基 Inactivating rust 金会和盖茨基金 resistance 会促进农业发展 suppressors to 的基础研究计划 unlock multiple (NSF-Gates) defense responses in 日本 “丸善制药 甘草资源调查和优 株式会社 良品种培育 -- 2. 国家科研项目 序 号 类别 经费 (万元) 负责人 青藏高原特殊生境下野 1 国家重大专项 生植物种质资源的调查 与保存 含醌类地道中药材的测 2 国家重大专项 试分析标准方法及标准 晓 物质研制 非粮柴油能源植物与相 3 国家重大专项 关微生物资源的调查、 收集与保存 4 国家重大专项 优质加工品质转基因小 28 中国科学院植物种质创新与特色农业重点实验室 2011 年报 麦新品种培育 5 国家重大专项 6 国家重大专项 7 973 8 973 转基因抗锈病小麦新种 质创制与新品种选育 抗病、优质转基因小麦 新种质遗传鉴定 重要园艺作物果实品质 形成机理与调控 小麦高产优质品种设计 和选育的应用基础研究 2009-1-1 2011-12-31 69 彭俊华 2011-11-1 2012-7-1 38 彭俊华 2011-1-1 2012-12-28 208 李绍华 2009-1-1 2013-12-30 50 彭俊华 2009-3-1 2011-3-30 10 李作洲 2009-1-1 2013-12-31 20 傅金民 2009-1-1 2013-12-31 68 王彦昌 2011-1-1 2012-10-31 270 黄宏文 2011-1-1 2011-12-31 22 韩月彭 2011-1-1 2014-12-31 220 彭俊华 2009-1-1 2011-12-31 30 彭俊华 2009-1-1 2011-12-31 32 李作洲 2009-1-1 2011-12-31 30 叶其刚 2009-1-1 2011-12-31 20 陈建军 沿丹江口库区种植业污 9 科技支撑计划 染生态防控技术研究与 示范 10 11 12 13 行业性重大 专项 行业性重大 专项 行业性重大 专项 行业性重大 专项 14 国家基金重点 15 国家自然基金 黄河上中游次生盐碱地 农业高效利用技术模式 研究与示范 东北野生猕猴桃保护、 开发和利用研究 国家猕猴桃种质资源圃 重要果树基因资源发掘 与创新的关键技术合作 研发 野生二粒小麦抗锈病和 耐逆境基因的挖掘研究 中国芒种质资源的分子 遗传多样性研究 濒危水韭属植物适应性 16 国家自然基金 遗传变异与回归自然重 建的遗传管理 中国特有属濒危植物裸 17 国家自然基金 芸香残存居群适应性的 遗传分化研究及居群杂 交复壮的遗传效应 18 国家自然基金 淫羊藿属植物基因组中 转座子重复序列的组成 29 中国科学院植物种质创新与特色农业重点实验室 2011 年报 19 国家自然基金 20 国家自然基金 中国淫羊藿属的分类学 研究 孑遗植物桫椤的适应性 种群分化研究 2010-1-1 2012-12-31 19 张燕君 2010-1-1 2012-12-31 30 王 2010-1-1 2012-12-31 21 韩月彭 2010-1-1 2012-12-31 38 李绍华 2011-1-1 2013-12-31 19 卢 洋 2011-1-1 2013-12-31 19 闫 娟 2011-1-1 2013-12-31 22 周 媛 2011-1-1 2013-12-31 18 辛海平 2011-1-1 2013-12-31 21 李志能 2011-1-1 2011-12-31 8 李新伟 2011-1-1 2013-12-31 34 王恒昌 2011-1-1 2013-12-31 32 李建强 2011-1-1 2013-12-31 33 傅金民 艇 基于 SSR 遗传图谱的苹 21 国家自然基金 果糖酸品质性状的基因 定位 葡萄果实发育过程中香 22 国家自然基金 气物质形成关键时期的 研究 23 国家自然基金 缬草属植物雌花两性花 同株的适应意义研究 中国野生花苜蓿由大格 24 国家自然基金 局到精密尺度格局的居 群遗传变异模式和生态 适应性进化初探 铁角蕨属不同生态型植 25 国家自然基金 物隐花色素基因家族的 适应性进化研究 26 国家自然基金 基于表达谱的山葡萄抗 寒调控研究 淫 羊 藿 27 国家自然基金 A-E 类 MADS-box 基因与花型 演化的关系 28 国家自然基金 中国猕猴桃属两个复合 体的分类学研究 欧亚北美间断高山特征 29 国家自然基金 成分山莓草属的扩散和 分化研究 列当科植物叶绿体基因 30 国家自然基金 组进化及其与寄生性的 关系 中国高羊茅种质资源耐 31 国家自然基金 热生理鉴定及分子遗传 基础研究 30 中国科学院植物种质创新与特色农业重点实验室 2011 年报 蓖子三尖杉种群遗传分 32 国家自然基金 化中的气候和环境效应 2011-1-1 2013-12-31 32 王 艇 2011-1-1 2012-12-31 10 王 瑛 -- -- 1870 研究 33 其他国家任务 合 全国中草药汇编第三版 修订 -- 计 -- -- 3. 中科院创新专项和院专项 序 项目名称 号 经费 开题日期 结题日期 2009-1-1 2011-12-30 30 姚小洪 2009-1-1 2011-12-30 20 王 2009-1-1 2011-12-30 20 王恒昌 2009-6-1 2012-12-30 50 钟彩虹 2009-1-1 2011-12-30 45 李夜光 2010-1-1 2011-12-31 10 李建强 2011-1-1 2013-12-31 600 李绍华 2011-1-1 2012-12-31 5 钟彩虹 2011-1-1 2012-12-31 10 杨 2011-1-1 2013-12-31 40 姚小洪 2011-1-1 2015-12-31 140 彭俊华 (万元) 负责人 植物园迁地保护濒危植物秤锤 1 树的遗传学风险评估与回归引 种居群的科学构建 2 3 4 5 6 7 8 松叶蕨的种群遗传结构和分子 系统发育地理研究 东亚特有濒危植物连香树的谱 系地理学研究 猕猴桃和葡萄绿色生态产业化 生产技术集成研究与示范 产油微藻的半封闭大量培养技 术 中华大典.生物典.植物分类编纂 特色农业植物资源种质创新与 可持续利用 软枣猕猴桃新品种主试验区示 范 艇 中国科学院绿色农业技术集成 9 与发展中心 2011-2012 年运行经 波 费 特种分布范围的遗传分析-濒危 10 植物鹅掌揪遗传多样性的分布 格局、基因流及适应性遗传分化 11 考古遗存典型农作物-野生植物 鉴定 31 中国科学院植物种质创新与特色农业重点实验室 2011 年报 草地生态系统固碳现状、速率、 12 机制和潜力 2011-1-1 2015-12-31 120 傅金民 2007-9-1 2011-12-31 200 彭俊华 2008-4-1 2011-4-30 100 李绍华 2009-1-1 2012-8-30 6.75 李新伟 2009-1-1 2013-12-31 25 李绍华 2008-12-1 2011-12-30 200 傅金民 2011-1-1 2011-12-31 9.8 李绍华 2011-1-1 2013-12-31 260 章焰生 2011-1-1 2013-12-31 260 杨平仿 2011-1-1 2013-12-31 200 韩月彭 2011-1-1 2013-12-31 40 李惠英 2009-1-1 2013-12-31 25 王 -- -- 2416.6 能源和果树植物种质资源评价 13 与新品种选育 植物库源关系的气孔调控及抗 14 氧化与热耗散保护机制的研究 壳斗科和猕猴桃科 DNA 条形码 15 16 研究 水果生长发育性状调控 草坪种质资源收集、评价与种质 17 18 创新 外籍特聘研究员计划 植物药用化合物合成途径功能 19 基因的挖掘 植物繁殖过程中种子形成与萌 20 发的分子机理 果树果实重要品质改善的遗传 21 机制与分子改良 湖南重金属超富集草坪草的选 22 育与示范 药用植物种质资源收集及遗传 23 学研究 瑛 合 -- 计 -- 4. 研究所自选项目 序号 项目名称 经费 开题日期 结题日期 2007-9-1 2011-8-29 77 彭俊华 (万元) 战略植物种质资源的评价与新 1 品种选育 负责人 2 桃基因分布格局 ZX 2007-1-1 2011-12-30 22 程中平 3 果树分子育种 2008-11-1 2011-12-30 100 韩月彭 2009-1-1 2012-12-30 77 傅金民 2009-1-1 2011-12-30 10 周建峰 草坪种质资源收集、评价与种质 4 5 创新 野大豆起源、种群扩散模式和基 32 中国科学院植物种质创新与特色农业重点实验室 2011 年报 因组水平遗传多样性研究 6 植物分典编纂 PP 2010-9-1 2013-12-31 20 李建强 7 资源植物繁殖生物学 2010-1-1 2013-12-31 77 杨平仿 8 连香树的系统地理学研究 2010-1-1 2011-12-31 10 王恒昌 9 天然药物生物合成学 2010-1-1 2013-12-31 77 章焰生 10 松叶蕨的种群遗传结构分析 2010-6-1 2012-5-31 2 王 2011-11-1 2014-12-31 70 产祝龙 -- -- 542 -- 项目名称 开题日期 结题日期 东湖植物资源调查与利用 2008-1-1 2014-12-29 15 程中平 2009-1-1 2011-12-31 20 王 2009-1-1 2013-12-30 15 程中平 2009-1-1 2011-12-30 7 彭俊华 2009-1-1 2011-12-30 6 赵 华 艇 草坪草-狗牙根对水分胁迫的应 11 答机制 -- 合计 艇 5. 其他横向委托项目 序 号 1 2 3 4 5 药用植物滛羊霍的遗传和化学成分多样 性及可持续利用 猕猴桃及板栗品种推广与示范技术研究 生物质能源树种油桐优异种质资源的筛 选与利用研究 中国芒种质资源调查、收集及其数据库平 台的建立 经费 (万元) 负责人 瑛 6 莲藕的叶绿体基因组学研究 2009-1-1 2012-12-30 3 王 7 湖北省猕猴桃种质资源创新与品种选育 2010-1-1 2011-12-31 20 钟彩虹 2010-1-1 2011-12-31 4 李志能 2010-1-1 2012-12-31 6 李志能 8 9 菊花 MYB 转录因子的功能解析及应用研 究 MYB 及其结构域对菊花花青素合成影响 的研究 10 中国外来入侵植物志 2010-6-1 2013-12-31 12 陈 11 武汉长山口垃圾生态修复 2011-1-1 2016-12-31 60 程中平 2011-1-1 2015-12-31 10 程中平 2011-3-18 2013-12-31 12 程中平 12 13 桃与山桃自然居群遗传变异及其遗传关 系的分子遗传学研究 武汉城区园林植物群落对典型空气污染 物吸收效果的研究 丽 14 螺旋藻技术优化 2004-12-28 2019-12-28 300 李夜光 15 红球藻中试及规模化养殖 2006-11-15 2016-11-14 58 李夜光 33 中国科学院植物种质创新与特色农业重点实验室 2011 年报 16 微藻生物柴油成套技术开发 2010-1-1 2012-12-31 420 李夜光 2010-1-1 2012-12-31 55 耿亚洪 2008-11-1 2011-12-30 58 钟彩虹 2008-1-1 2011-12-30 40 王 庆 庆 适于内陆淡水充足地区养殖的产油微藻 17 18 的筛选 猕猴桃品种开发及培育技术转让 黄鹤楼(红坪)百草园适栽植物栽培与示 19 范 20 泰州重要中药材选育及高通量筛选研发 2008-11-13 2012-12-30 30 王 21 合作建设成都猕猴桃资源基因库 2009-8-20 2014-8-20 120 钟彩虹 22 细梗胡枝子规范种植 2010-1-1 2011-12-31 10 王 庆 23 特种功能蔬菜推广种植 2010-10-1 2013-9-30 35 王 瑛 24 猕猴桃新品种中试及开发 2011-1-1 2016-12-31 60 钟彩虹 25 中药材及植物新品种示范推广研究 2011-7-28 2012-6-27 30 王 26 武汉花山生态新城启动区植被调查 2009-12-18 2012-12-31 5.8 李晓东 27 猕猴桃新品种研究 2005-7-1 2012-12-31 100 黄宏文 28 猕猴桃科研开发 2011-11-10 2021-11-10 490 钟彩虹 29 香料植物繁殖技术研究 2011-11-1 2016-12-31 50 杨 2011-1-1 2012-12-31 2 汪志伟 2011-1-1 2012-12-31 2 汪 萝卜源 OguraCMS 新恢复基因 Rfo2 的克 30 隆及功能解析 葡萄果实白藜芦醇合成调控因子筛选及 31 其功能验证 庆 波 念 32 苍溪猕猴桃新品种选育 2011-11-1 2014-12-31 60 王彦昌 33 宁夏耐盐碱草筛选 2011-11-1 2013-12-31 12.5 傅金民 -- -- 2128..3 -- 合 -- 计 6. 2011 年度获国家自然科学基金资助项目 序 负责人 类别 葡萄种质资源抗旱寒评价及其抗性基因挖掘与利用 李绍华 重点项目 300 章焰生 面上项目 55 李新伟 面上项目 55 汪 念 面上项目 60 王彦昌 面上项目 60 号 1 2 3 4 5 经费 项目名称 葛根素生物合成途径关键糖基转酶基因的克隆与功 能分析 猕猴桃属种复合体的综合分类学研究 基于高密度遗传图谱的葡萄果实白藜芦醇含量 QTL 定位 温度影响红肉猕猴桃呈色的色素降解机制研究 34 (万元) 中国科学院植物种质创新与特色农业重点实验室 2011 年报 6 7 8 9 10 11 12 13 合 计 水稻柱头与花粉识别机理的蛋白质组学研究 萝卜源 Ogura 细胞质雄性不育新恢复基因座新恢复 基因 Rfo2 的克隆及功能解析 中国芒抽穗期与分蘖相关基因等位变异与功能标记 开发研究 中国菱属植物种质资源的分子鉴定及细果野菱遗传 结构的研究 水稻线粒体定位基因 OsB12D1 在种子萌发中的功能 及作用机理研究 猕猴桃维生素 C 遗传机理及 Vc 代谢关键基因发掘 桃 CHI 基因启动子区一个插入片段参与调控叶片花 青素合成的机制研究 狗牙根适应盐胁迫的根/冠异速生长特性及机理研 究 -- 35 王 坤 青年科学基金 23 汪志伟 青年科学基金 22 赵 华 青年科学基金 22 陈媛媛 青年科学基金 23 何冬丽 青年科学基金 23 李大卫 青年科学基金 25 周 莹 青年科学基金 24 胡龙兴 青年科学基金 23 -- -- 715 中国科学院植物种质创新与特色农业重点实验室 2011 年报 附录二 科研产出 1. 发表论文情况(按第一作者姓氏拼音排序) 1) Chen L, Zhang ZG, Hu Y, Li XW, Li JQ. A new species and one new name in Castanopsis (Fagaceae) from hainan, China. NOVON 2011, 21: 317-321 2) Chen YY, Bao ZX, Li ZZ. High allozymic diversity in natural populations of Mycoheterotrophic Orchid Gastrodia elata, an endangered medicinal plant in China. Biochemical Systematics and Ecology 2011, 39: 526-535 3) Cheng ZP, Gasic K, Wang ZL, Chen XZ. Genetic diversity and genetic structure in natural populations of Prunus davidiana germplasm by SSR markers. Journal of Agricultural Science, 2011, 3 (4): 113-125 4) Dong JZ, Gao WS, Lu DY, Wang Y. Simultaneous extraction and analysis of four polyphenols from leaves of Lycium barbarum L. Journal of Food Biochemistry 2011, 35: 914-931 5) Dong JZ, Wang ZC, Wang Y. Rapid extraction of polysaccharides from fruits of Lycium barbarum L. Journal of Food Biochemistry 2011, 35: 1047-1057 6) Gao L, Zhou Y, Wang ZW, Su YJ, Wang T. Evolution of the rpoB-psbZ region in fern plastid genomes: notable structural rearrangements and highly variable intergenic spacers. BMC Plant Biology 2011, 11: 64 7) Han YP, Zheng DM, Vimolmangkang S, Khan MA, Beever JE, Korban SS. Integration of physical and genetic maps in apple confirms whole-genome and segmental duplications in the apple genome. Journal of experimental botany 2011, 62: 5117-5130 8) He DL, Han C, Yang PF. Gene expression profile changes in germinating rice. Journal of Integrative Plant Biology 2011, 53 (10): 835-844 9) He DL, Han C, Yao JL, Shen SH, Yang PF. Constructing the metabolic and regulatory pathways in germinating rice seeds through proteomic approach . Proteomics 2011, 11: 2693-2713 10) Hu HJ, Li YG, Yin CT, Ouyang YX. Isolation and characterization of a mesophilic Arthrospira maxima strain capable of producing docosahexaenotic acid. Journal of Microbiology and Biotechnology 2011, 21 (7): 697-702 36 中国科学院植物种质创新与特色农业重点实验室 2011 年报 11) Hu T, Li HY, Zhang XZ, Luo HJ, Fu JM. Toxic effect of NaCl on ion metabolism, antioxidative enzymes and gene expression of perennial ryegrass. Ecotoxicology and Environmental Safety 2011, 74: 2050-2056 12) Li HY, Liu L, Lou YH, Hu T, Fu JM. Genetic diversity of Chinese natural bermudagrass (Cynodon dactylon) germplasm using ISSR markers. Scientia Horticulturae 2011, 127: 555-561 13) Liang ZC, Sang M, Fan PG, Wu BH, Wang LJ, Yang SH, and Li SH. CIELAB coordinates in response to berry skin anthocyanins and their composition in Vitis. Journal of Food Science 2011, 76: c490-c497 14) Liang ZC, Sang M, Ma AH, Zhao SJ, Zhong GY, Li SH. Inheritance of sugar and acid contents in the ripe berries of a tetraploid 3 diploid grape cross population. Euphytica 2011, 182: 251-259 15) Liu HY, Yang WL, Liu DC, Han YP, Zhang AM, Li SH. Ectopic expression of a grapevine transcription factor vWRKY11 contributes to osmotic stress tolerance in Arabidopsis. Mol Biol Rep 2011, 38: 417-427 16) Luo HB, Ma L, Xi HF, Duan W, Li SH, Loescher W, Wang JF, Wang LJ. Photosynthetic responses to heat treatments at different temperatures and following recovery in grapevine (Vitis amurensis L.) leaves. PLoS one 2011, 6 (8): e23033 17) Luo HJ, Li HY, Zhang XZ, Fu JM. Antioxidant responses and gene expression in perennial ryegrass (Lolium perenne L.) under cadmium stress. Ecotoxicology 2011, 20: 770-778 18) Luo S, Peng JH, Li KP, Wang M and Kuang HH. Contrasting evolutionary patterns of the RP1 resistance gene family in different species of Poaceae. Molecular Biology and Evolution 2011, 28(1) : 213-325 19) Man YP, Wang YC, Zhang L, Li ZZ, Qin R, Jiang ZW, Sun XR, Liu CJ. Development of microsatellite makers in Actinidia arguta (Actinidiaceae) based on the NCBI data platform. American Journal of Botany 2011: e310-e315 20) Pan HW, Guo YR, Su YJ, Wang T. Development of microsatellite loci for Cephalotaxus oliveri (Cephalotaxaceae) and cross-amplification in Cephalotaxus. American Journal of Botany 2011, 229-232 37 中国科学院植物种质创新与特色农业重点实验室 2011 年报 21) Pan L, Quan ZW, Hu JH, Wang GY, Liu SN, He Y, Ke WD, Ding Y. Genetic diversity and differentiation of lotus (Nelumbo nucifera) accessions assessed by simple sequence repeats. Annals of Applied Biology 2011, 159: 428-441 22) Peng JH, Sun DF, Nevo E. Domestication evolution, genetics and genomics in wheat. Molecular Breeding 2011, 28: 281-301 23) Peng JH, Sun DF, Nevo E. Wild emmer wheat, Triticum dicoccoides, occupies a pivotal position in wheat domestication process. Australian Journal of Crop Science 2011, 5 (9): 1127-1143 24) Sen L, Fares MA, Liang B, Gao L, Wang B, Wang T, Su YJ. Molecular evolution of rbcL in three gymnosperm families: identifying adaptive and coevolutionary patterns. Biology Direct 2011, 6: 29 25) Su YJ, Liao WB, Wang T, Sun YF, Wei Q, Chang HT. Phylogeny and evolutionary divergence times in Apterosperma and Euryodendron: Evidence of a Tertiary origin in south China. Biochemical Systematics and Ecology 2011, 39(4-6): 769-777 26) Wang N, Qian W, Suppanz I, Wei LJ, Mao BZ, Long Y, Meng JL, Mu¨ ller AE, Jung C. Flowering time variation in oilseed rape (Brassica napus L.) is associated with allelic variation in the FRIGIDA homologue BnaA.FRI.a. Journal of Experimental Botany 2011, 62(15): 5641-5658 27) Wu BH, Liu HF, Guan L, Fan PG, Li SH. Carbohydrate metabolism in grape cultivars that differ in sucrose accumulation. Vitis 2011, 50 (2): 51-57 28) Yang AH, Zhang JJ, Yao XH, Huang HW. Chloroplast microsatellite markers in Liriodendron tulipifera (Magnoliaceae) and cross-species amplification in L.chinense. American Journal of Botany 2011: e123-e126 29) Yang CX, Wang YJ, Wu BH, Fang JB, Li SH. Volatile compounds evolution of three table grapes with different flavor during and after maturation. Food Chemistry 2011, 128: 823-830 30) Yao XH, Zhang JJ, Ye QG, Huang HW. Fine-scale spatial genetic structure and gene flow in a small, fragmented population of Sinojackia rehderiana (Styracaceae), an endangered tree species endemic to China.Plant Biology 2011, 13: 401-410 38 中国科学院植物种质创新与特色农业重点实验室 2011 年报 31) Ye QG, Bunn E, Dixon KW. Failure of sexual reproduction found in micropropagated critically endangered plants prior to reintroduction: a cautionary tale. Botanical Journal of the Linnean Society 2011, 165: 278-284 32) Zeng SH, Xu YQ,Wang Y. Isolation and characterization of two MADS-box genes from Lycium barbarum. Biologia Plantarum 2011, 55 (3): 567-571 33) Zhang HF, Yang XH, Wang Y. Microwave assisted extraction of secondary metabolites from plants: Current status and future directions. Trends in Food Science & Technology 2011, 22: 672-688 34) Zhao H, Yu JY, You FM, Luo MC and Peng JH. Transferability of microsatellite markers from Brachypodium distachyon to Miscanthus sinensis, a potential biomass crop. Journal of Integrative Plant Biology 2011, 53 (3): 232-245 35) 程中平,吴群,黄俊斌,胡春根,王章利. 抗栗疫病板栗品种及优系鉴定. 中 国南方果树, 2011, 40 (3): 40-43,47 36) 胡营,楚海家,李建强. 4 个花苜蓿居群叶片解剖结构特征及其可塑性对不同 水分处理的响应. 植物科学学报, 2011, 29 (2): 218-225 37) 李晓东,昝艳燕,刘宏涛,李建强.川鄂獐耳细辛一新变型. 西北植物学报, 2011, 31 (11): 2333-2334 38) 李晓东,昝艳燕,罗曼曼,刘宏涛,李建强. 地黄属的分类修订. 植物科学 学报, 2011, 29 (4): 423-431 39) 李作洲,暴朝霞,黄宏文. 药用植物天麻的等位酶遗传变异及其变型间的遗 传关系. 植物科学学报, 2011, 29 (1): 64-73 40) 刘谊兰,曾少华,王瑛. 淫羊藿属植物查耳酮合成酶启动子序列的克隆及比 较分析. 热带亚热带植物学报, 2011, 19 (4): 374-380 41) 娄燕宏,傅金民,李惠英,孙建明,刘莉,胡涛. 不同地理种群狗牙根耐寒 性研究. 生态科学, 2011, 30 (1): 32-37 42) 吴群, 程中平, 黄俊斌, 胡春根, 王章利. 温度、光照及杀菌剂对板栗疫病菌 生长的影响.中国南方果树, 2011, 40 (1): 20-24 43) 杨 娜 , 杨 波 . 蕙 兰 病 株 根 部 内 生 菌 种 群 变 化 . 生 态 学 报 , 2011, 31 (5): 1203-1212 44) 杨娜,杨波. 蕙兰根部内生菌多样性及季节动态变化. 植物科学学报, 2011, 29 (2): 156-163 39 中国科学院植物种质创新与特色农业重点实验室 2011 年报 45) 张桂艳,温小斌,梁芳,欧阳峥嵘,耿亚红,梅洪,李夜光. 重要理化因子 对小球藻生长速率、生物量和油脂积累的影响. 生态学报, 2011, 31 (8): 2076-2085 46) 张景博,李建强. 莎草科薹草属黑穗薹草组的植物地理学讨论. 植物科学学 报, 2011, 29 (1): 42-49 47) 张玲玲, 彭俊华. 油桐资源价值及其开发利用前景. 经济林研究, 2011, 29 (2): 130-136 48) 钟彩虹,张鹏,姜正旺,王圣梅,韩飞,徐立云,黄宏文. 中华猕猴桃和毛 花猕猴桃果实碳水化合物及维生素 C 的动态变化研究. 植物科学学报, 2011, 29 (3): 370-376 49) 周媛, 王博, 高磊, 王艇. 凤尾蕨科旱生蕨类 rbcL 基因的适应性进化和共进 化分析. 植物科学学报, 2011, 29 (4): 409 - 416 2. 专著 黄宏文、姜正旺、钟彩虹. 猕猴桃研究进展 VI,科学出版社,2011 3. 获奖 王瑛研究员主持完成的“五种特种蔬菜的品种选育、栽培技术和应用研究”获武 汉市科技进步三等奖。 4. 专利 授权专利 6 项: 1) 一种植物小桐子种壳制备活性炭的方法 (专利号:ZL200910062247.5,袁晓、 袁萍) 2) 雨生红球藻孢子破壁率的测定方法(专利号: ZL200910063306.0,李夜光、耿 亚红、温小斌) 3) 一种保健口服液及其制备方法(专利号:ZL200810197013.7,王瑛、董静洲、 张华峰、杨天顺) 4) 盐碱地草坪种植方法(专利号:ZL201010162864.5,傅金民、娄燕宏) 5) 油桐的无性扦插繁殖方法(专利号:ZL201110047624.5,彭俊华、任景) 6)油桐油酸脱氢酶基因突变体 SNP232 及其获得方法 (专利号 ZL201010579087.4, 彭俊华、任景) 申请专利 9 项: 1)油桐的无性扦插繁殖方法(申请号: 201110047624.5,彭俊华、任景) 40 中国科学院植物种质创新与特色农业重点实验室 2011 年报 2)一种含有转基因位点的番茄株系的制备方法(申请号: 201110091446.6,王瑛、 周银) 3)一种从紫草中分离出萘醌类有效成分的方法 (申请号:201110164992.8,袁 晓、袁萍) 4)一种葛根的快速繁殖方法 (申请号:201110029788.5 ,李长富、章焰生) 5) 羽扇豆醇 C28 氧化酶基因及其获得方法与应用(申请号:201110342944.3, 章焰生、黄莉莉、李长福、黎佳) 6)富含多糖多酚植物高质量细胞核 DNA 的提取方法(201110456519.7,韩月彭、 王鲁、谷超) 7)植物基因组 DNA 的循环提取方法(201110453509.8, 彭俊华、张玲玲) 8)油桐幼叶基因组 DNA 提取方法 (201110453531.2,彭俊华、张玲玲) 9)油桐成熟叶片和老叶片基因组 DNA 提取方法( 201110454394.4,彭俊华、张 玲玲) 5. 成果鉴定 李夜光研究员主持的省院省校合作项目“红球藻产业化生产及产品质量标准研 究”通过云南省科技厅组织的成果鉴定。 41 中国科学院植物种质创新与特色农业重点实验室 2011 年报 附录三 人员信息 1. 第一届学术委员会 姓 名 职 称 工作单位 室内职务 傅廷栋 教授、院士 华中农业大学 名誉主任 邓秀新 教授、院士 华中农业大学 主任 彭良才 教授、长江学者 华中农业大学 委员 匡汉晖 教授、长江学者 华中农业大学 委员 戴思兰 教授 北京林业大学 委员 何光源 教授 华中科技大学 委员 张本刚 研究员 中国医学科学院 委员 丁文军 教授 中国科学院研究生院 委员 李来庚 研究员 中国科学院上海植物生理生态研究所 委员 吴国江 研究员 中国科学院华南植物园 委员 陈 凡 研究员 中国科学院遗传与发育生物学研究所 委员 何舜平 研究员 中国科学院水生生物研究所 委员 李绍华 研究员 中国科学院武汉植物园 委员 张全发 研究员 中国科学院武汉植物园 委员 彭俊华 研究员 中国科学院武汉植物园 委员 王 瑛 研究员 中国科学院武汉植物园 委员 王 艇 研究员 中国科学院武汉植物园 委员 傅金民 研究员 中国科学院武汉植物园 委员 杨平仿 研究员 中国科学院武汉植物园 秘书 2. 重点实验室固定人员名单(不同职称按姓氏拼音排序) 序 号 姓名 性 出生 别 年月 最后 专业 学位 职 务 职称 性质 1 产祝龙 男 1975.9 植物学 博士 研究员 研究 2 程中平 男 1963.9 植物学 博士 研究员 研究 3 傅金民 男 1961.12 园艺学 博士 研究员 研究 4 韩月彭 男 1968.11 作物遗传育种 博士 研究员 研究 5 黄宏文 男 1957.1 园艺学 博士 研究员 研究 6 李建强 男 1954.11 植物学 博士 研究员 研究 7 李绍华 男 1957.9 园艺园林 博士 研究员 研究 8 李夜光 男 1962.5 植物学 硕士 研究员 研究 42 重点实验 室副主任 重点实验 室主任 中国科学院植物种质创新与特色农业重点实验室 2011 年报 植物分子遗传 9 彭俊华 男 1962.9 10 王 庆 女 1955.10 药学 11 王 艇 男 1969.3 12 王 瑛 女 13 王恒昌 14 杨 重点实验 研究员 研究 学士 研究员 研究 生物化学 博士 研究员 研究 1973.10 植物遗传学 博士 研究员 研究 男 1967.3 植物学 博士 研究员 研究 波 女 1959.6 园艺学 学士 研究员 研究 15 杨平仿 男 1975.7 博士 研究员 研究 16 章焰生 男 1972.12 植物学 博士 研究员 研究 17 姜正旺 男 1965.6 果树学 学士 副研究员 研究 18 李晓东 男 1966.11 植物学 博士 副研究员 研究 19 李新伟 男 1974.10 植物学 博士 副研究员 研究 20 李作洲 男 1967.5 植物学 博士 副研究员 研究 21 汪 念 男 1982.1 发育生物学 博士 副研究员 研究 22 汪志伟 男 1978.12 种群遗传学 博士 副研究员 研究 23 王彦昌 男 1973..9 农学 博士 副研究员 研究 24 辛海平 男 1980.2 发育生物学 博士 副研究员 研究 25 姚小洪 男 1975.11 植物学 博士 副研究员 研究 26 叶其刚 男 1968.10 植物学 硕士 副研究员 研究 27 袁 晓 男 1962.7 园艺学 硕士 副研究员 研究 28 张燕君 女 1980.9 植物学 博士 副研究员 研究 29 钟彩虹 女 1968.2 植物学 硕士 副研究员 研究 30 陈 丽 女 1982.10 植物学 博士 助理研究员 研究 31 陈 良 男 1981.2 植物分子遗传学 博士 助理研究员 研究 32 陈方方 女 1982.2 作物生物技术 博士 助理研究员 研究 33 陈建军 男 1979.12 植物学 博士 助理研究员 研究 34 陈媛媛 女 1977.2 分子生态 博士 助理研究员 研究 35 高 磊 男 1981.5 植物学 博士 助理研究员 研究 36 谷 超 男 1985.8 发育生物学 博士 助理研究员 研究 37 何冬丽 女 1977.11 博士 助理研究员 研究 38 胡龙兴 男 1982.7 园艺学 博士 助理研究员 研究 39 黎 女 1982.2 微生物学 博士 助理研究员 研究 佳 学 植物蛋白质组 学 藻类遗传与生 物技术 43 博士 室副主任 中国科学院植物种质创新与特色农业重点实验室 2011 年报 40 李大卫 男 1983.5 植物学 博士 助理研究员 研究 41 李惠英 女 1977.3 植物学 博士 助理研究员 研究 42 李志能 男 1980.2 博士 助理研究员 研究 43 卢 洋 男 1981.7 植物学 博士 助理研究员 研究 44 梅 洪 女 1979.12 水生生物学 博士 助理研究员 研究 45 潘 磊 男 1980.12 遗传学 博士 助理研究员 研究 46 王 坤 男 1981.12 遗传学 博士 助理研究员 研究 47 王 鲁 男 1976.12 发育生物学 博士 助理研究员 研究 48 王艳平 女 1983.01 发育生物学 博士 助理研究员 研究 49 闫 娟 女 1982.10 植物学 博士 助理研究员 研究 50 赵 华 女 1980.11 植物学 博士 助理研究员 研究 51 周 莹 女 1981.6 分子生物学 博士 助理研究员 研究 52 耿亚洪 女 1962.6 经济管理学 本科 高级实验师 技术 53 刘 婵 女 1962.10 实验师 技术 54 袁 萍 女 1956.4 高级实验师 技术 55 李长福 女 1971.12 昆虫学 硕士 工程师 技术 56 梁 女 1975.5 植物学 硕士 处长 管理 琼 园林植物与观 赏园艺 3. 重要人才情况 序号 人员姓名 荣誉称号 获得年份 1 李绍华 中国科学院“百人计划” 2003 年 2 王 瑛 中国科学院“百人计划” 2004 年 3 王 艇 中国科学院“百人计划” 2005 年 4 彭俊华 中国科学院“百人计划” 2007 年 5 韩月彭 中国科学院“百人计划” 2008 年 6 傅金民 中国科学院“百人计划” 2008 年 7 杨平仿 中国科学院“百人计划” 2010 年 8 章焰生 中国科学院“百人计划” 2010 年 9 产祝龙 中国科学院“百人计划” 2011 年 4. 国内外学术组织任职情况 序号 姓名 学术组织名称 职务 任职时间 1 程中平 武汉林学会 常务理事 2006- 2 韩月彭 湖北省遗传学会 理事 2009- 3 李绍华 国际生物多样性计划中国委员会 委员 2010-2014 44 中国科学院植物种质创新与特色农业重点实验室 2011 年报 中国科学院生物多样性委员会 委员 2010-2014 湖北省植物学会、武汉市植物学会 理事长 2008- 中国植物学会 理事 2008-2013 中国植物学会植物园分会 副理事长 2008-2013 中国园艺学会 常务理事 2005- 中国园艺学会桃分会 常务理事 2005- 中国农学会葡萄分会 常务理事 2006- 中国园艺学会李杏分会 副理事长 2001- 主席 2010-2014 专家组成员 2006- 11TH International Conference on Grapevine Breeding and Genetics 4 李晓东 国际自然保护联盟(IUCN)物种保 护专业委员会 5 李夜光 常务理事 中国藻类学会 副秘书长 理事 2008-2012 湖北省林学会 副理事长 2008-2013 湖北省植物学会 常务理事 2009-2014 委员 2009- 委员 2008-2013 理事 2010-2014 副主任 2009- 湖北省植物学会 理事 2007- 湖北省细胞生物学会 理事 2009- Asia Oceania Agricultural Council Member 2011- 委员 2011- 中国海洋湖沼学会 6 7 彭俊华 王 庆 2007-2011 中国植物学会药用植物和植物药 专业委员会 8 王 艇 中国植物学会植物分类与系统进 化专业委员会 中国花卉协会蕨类植物分会第四 届理事会 9 10 王 瑛 杨平仿 中国植物学会药用植物和植物药 专业委员会 Proteomics Organization (AOAPO) 中国生物化学与分子生物学会蛋 白质组学专业委员会 中国植物学会种子科学与技术专 业委员会 45 委员 2011- 中国科学院植物种质创新与特色农业重点实验室 2011 年报 5. 国内外学术期刊任职情况 序号 姓名 学术期刊名称 职 务 任职时间 1 傅金民 Ecotoxicology 编委 2010- 2 韩月彭 Plant Molecular Biology Reporter 副编辑 2008- Canadian Journal of Plant Science 编辑 2010- 3 李建强 Journal of Systematics and Evolution 副编辑 2009- 4 李绍华 Journal International des Sciences de la Vigne et du Vin 编委 2011- 《园艺学报》 副主编 2006- 《果树科学》 副主编 2006- 《植物科学学报》 主编 2010- 《广西植物》 编委 2011- Journal of Genetics and Genomics 编辑 2010-2015 Agriculture Sciences 编辑 2010-2015 The Scientific World Journal 编辑 2011-2014 编辑 2011-2012 编委 2006-2013 5 6 彭俊华 王 艇 Hans Journal of Computational Biology 《生物多样性》 46 中国科学院植物种质创新与特色农业重点实验室 2011 年报 附录四 人才培养 1. 2011 年毕业研究生学位和论文情况 序 号 答辩人 性 学位 别 所学 指导 专业 教师 论文题目 1 周 银 女 博士 植物学 王 瑛 2 森 林 男 博士 植物学 王 艇 3 楚海家 男 博士 植物学 李建强 花苜蓿的遗传多样性和表型变异的研究 4 陈金金 女 硕士 植物学 彭俊华 小麦 SSR 标记对中国芒的可转移性研究 5 周 锦 男 硕士 植物学 黄宏文 6 杨 娜 女 硕士 植物学 杨 波 新型定点重组系统在番茄中的应用 蕨类和裸子植物重要光合作用基因的分 子进化研究 基于中华猕猴桃复合体 EST 数据库的 SNP 分子标记开发研究 蕙兰内生细菌多样性及季节动态变化 淫羊藿类黄酮代谢途径三个结构基因启 7 刘谊兰 女 硕士 植物学 王 瑛 动子的克隆分析及 ZEP 系统发育应用研 究 8 邱 蓉 女 硕士 植物学 程中平 9 廖 利 女 硕士 植物学 李作洲 10 张 亮 男 硕士 植物学 王彦昌 11 张 洋 男 硕士 植物学 叶其刚 桃属植物系统发育及演化关系分析 中华/美味猕猴桃复合体景观遗传结构和 分子系统地理学研究 三峡库区两种濒危植物的传粉与生殖成 功研究 2. 在读博士后 陈英明(指导教师:彭俊华) 刘 莉(指导教师:傅金民) 3. 在读博士研究生 年级 2007 2008 姓 名 导师 姓名 专业 年级 姓 名 蝶 黄文俊 王 瑛 植物学 胡 宋 王 瑛 植物学 向巧彦 李绍华 植物学 梁 黄宏文 植物学 驰 琼 47 2010 导师 姓名 专业 李建强 植物学 胡伟明 王 瑛 植物学 杨爱红 黄宏文 植物学 张玲玲 傅金民 彭俊华 植物学 中国科学院植物种质创新与特色农业重点实验室 2011 年报 2008 2009 2010 钟彩虹 黄宏文 植物学 程 钧 韩月彭 植物学 李峰奇 彭俊华 植物学 王 博 王 艇 植物学 张紫刚 李建强 植物学 温小斌 李夜光 植物学 肖 贡 王 瑛 植物学 李兆波 章焰生 植物学 易 轩 王 艇 植物学 方林川 李绍华 植物学 李吉涛 李绍华 植物学 杨路路 王 瑛 植物学 石 涛 黄宏文 植物学 任 景 傅金民 植物学 李文彬 黄宏文 植物学 杜志敏 傅金民 植物学 胡 涛 傅金民 植物学 孙小艳 傅金民 植物学 梁 燕 彭俊华 植物学 周 晖 韩月彭 植物学 朱婷婷 彭俊华 植物学 沈 雄 李夜光 植物学 刘 迪 王 瑛 植物学 孙延霞 李建强 植物学 王淑慧 王 瑛 植物学 李 明 杨平仿 植物学 张 琼 韩月彭 植物学 韩 超 杨平仿 植物学 梁 芳 李夜光 植物学 李 晶 章焰生 植物学 陈 莎 李绍华 植物学 2010 2011 4. 在读硕士研究生 年级 2009 导师 名 祝 铭 李建强 植物学 孙志强 章焰生 植物学 王 博 彭俊华 植物学 项 悦 李绍华 园林植物与观赏园艺 戴李菁 彭俊华 植物学 谢 燕 傅金民 园林植物与观赏园艺 黄泽辉 傅金民 植物学 郭慧娟 傅金民 园林植物与观赏园艺 张萍萍 傅金民 植物学 马百全 韩月彭 园林植物与观赏园艺 刘永亮 王 瑛 植物学 祝 为 李绍华 生物工程 魏国燕 王 瑛 植物学 罗宏基 傅金民 生物工程 饶静云 黄宏文 植物学 韩艳妮 韩月彭 生物工程 颜 菱 黄宏文 植物学 刘春燕 黄宏文 植物学 许 可 王 艇 植物学 范吉标 傅金民 植物学 马娟娟 韩月彭 植物学 姜 斌 王 艇 植物学 江丽丽 李夜光 植物学 张 虎 李夜光 植物学 罗曼曼 李晓东 植物学 冯 涛 李建强 植物学 袁 王恒昌 植物学 张 慧 杨平仿 植物学 珊 姓名 专业 年级 2010 2011 48 姓 名 导师 姓 姓名 专业 中国科学院植物种质创新与特色农业重点实验室 2011 年报 2009 朱奉霞 杨 阮咏梅 叶其刚 章焰生 植物学 生态学 刘淑倩 傅金民 生物工程 植物学 赵 双 韩月彭 生物工程 植物学 王 欣 杨平仿 生物工程 李建强 植物学 沈 佳 章焰生 生物工程 廖思红 王 瑛 植物学 王传德 汪志伟 生物工程 刘 磊 黄宏文 植物学 王莉娜 李绍华 园林植物与观赏园艺 李 佳 王 艇 植物学 沈笑飞 王 瑛 园林植物与观赏园艺 邓 娇 杨平仿 植物学 赵状军 傅金民 园林植物与观赏园艺 尹小建 杨平仿 植物学 魏国超 韩月彭 园林植物与观赏园艺 张 丹 李夜光 植物学 王应丽 王 瑛 园林植物与观赏园艺 朱晓艳 李夜光 植物学 刘瑞杰 产祝龙 园林植物与观赏园艺 李 章焰生 植物学 越 余江艳 刘 2010 园林植物与 李缘君 潘 洁 倩 波 观赏园艺 傅金民 彭俊华 傅金民 彭俊华 2011 5. 2011 年研究生获奖一览表 序号 获奖名称 获奖人员 指导教师 1 昌华奖学金优秀奖 森 林 王 艇 2 院“优秀学生干部” 魏国燕 王 瑛 3 院“三好学生” 森 林 王 艇 4 院“三好学生” 韩 超 杨平仿 5 院“三好学生” 杨爱红 黄宏文 6 院“三好学生” 袁 珊 王恒昌 7 院“三好学生” 王 博 彭俊华 8 院“三好学生” 魏国燕 王 9 院“三好学生” 张 韩月彭 10 院“三好学生” 张玲玲 11 院“三好学生” 周 晖 韩月彭 12 院“三好学生” 胡 涛 傅金民 13 武汉教育基地优秀毕业生 森 林 王 艇 14 武汉教育基地优秀毕业生 杨 娜 杨 波 15 武汉教育基地优秀毕业生 陈金金 49 琼 瑛 傅金民、彭俊华 彭俊华 中国科学院植物种质创新与特色农业重点实验室 2011 年报 附录五 合作交流 1. 出访项目 2010 年 9 月 28 日-2011 年 9 月 15 日,受中国科学院公派出国留学计划资助,汪 志伟副研究员赴英国 John Innes Centre, 在英国皇家科学院院士、美国科学院外 籍院士 Caroline Dean 教授指导下,从事植物开花时间的分子调控合作研究。 2010 年 11 月 1 日-2011 年 10 月 30 日,受中国科学院公派出国留学计划资助, 姚小洪副研究员赴美国密歇根大学生态与进化系,开展榕树的群落系统发育研 究。 1 月 3 日-7 日,杨平仿研究员作为特邀代表,赴香港科技大学参加“植物细胞信 号传递及分子系统生物学中的磷酸化蛋白质组学研究”高级研讨会。 2 月 17 日-8 月 17 日,受 973 项目的资助,辛海平副研究员赴美国伊利诺伊州立 大学厄巴纳-香槟分校 Ming Ray 教授实验室进行了生物信息学操作学习,并对糖 代谢基因在葡萄驯化过程中的变化进行了初步分析。 7 月 5 日-9 日,傅金民研究员赴美国,执行草坪草新品种培育和种子生产技术交 流。 8 月 1 日-2012 年 7 月 31 日,受中国科学院公派出国留学计划资助,李新伟副研 究员赴美国德克萨斯大学奥斯汀分校学习分子生物学,主要研究小 RNA MIR172 对拟南芥杂交种和亲本基因表达的影响。 9 月 5 日-20 日,韩月彭研究员赴美国,执行 948 项目“重要果树基因资源发掘 与创新的关键技术合作研发”。 9 月 23 日-29 日,应美国园艺学会邀请,王瑛研究员、王庆研究员和杨波研究员 赴美国参加美国园艺学会年会,王瑛研究员作了题为“药用植物淫羊藿活性物质 的生物合成及调控” 。 11 月 28 日-12 月 6 日,王瑛研究员赴日本参加“第 8 届茄科和葫芦科基因组学 国际大会”和“甘草的植物化学和栽培育种双边研讨会议”,并作了题为“中国 甘草资源的多样性研究进展”的大会报告。 2. 来访活动 2 月 19 日-3 月 7 日,应王瑛研究员的邀请,澳大利亚昆士兰大学 Alice Hayward 教授到武汉植物园,就基因组学相关研究开展合作交流。 3 月 29 日- 4 月 2 日,应杨平仿研究员的邀请,英国伯明翰大学 Noni Franklin-Tong 50 中国科学院植物种质创新与特色农业重点实验室 2011 年报 教授来重点实验室,就植物有性生殖机理研究进行了学术交流。 4 月 5 日-7 日,应杨平仿研究员的邀请,香港科技大学余维川教授来重点实验室, 就蛋白质组学数据的分析策略及深度挖掘进行了学术交流。 4 月 16 日-21 日,应韩月彭研究员的邀请,美国伊利诺伊大学厄巴纳-香槟分校 Ming Ray 教授来武汉植物园,就果树分子育种进行了学术交流。 5 月 8 日-10 日, 应章焰生研究员的邀请,美国 Conagen 生物公司研究员 Jixiang Han 博士来重点实验室,并就甘油脂生物合成以及脂肪酸代谢调控等研究开展学术交 流。 7 月 2 日- 6 日, 应韩月彭研究员的邀请, 西班牙瓦伦西亚农业研究所 Leandro Peña 研究员来重点实验室,就柑橘的分子生物学研究开展学术交流。 9 月 1 日-10 月 30 日, 应中科院特聘研究员计划邀请,美国肯塔基大学 Douglas D. Archbold 教授来重点实验室,就园艺植物分子育种开展为期两个月的合作科研。 9 月 4 日-7 日,应韩月彭研究员的邀请,美国伊利诺伊大学厄巴纳-香槟分校 Muhammad Awais Khan 博士来重点实验室,就果树的遗传连锁图谱,QTL 定位 和关联作图等研究进行学术交流。 10 月 20 日-25 日, 应李绍华研究员邀请,法国波尔多大学 Serge Delrot 博士来 重点实验室,就葡萄酒产业及科研进行学术交流。 10 月 21 日-27 日, 应韩月彭研究员的邀请,美国克莱姆森大学 Abbott Albert Glenn 教授来重点实验室,就桃基因组学的研究进行学术交流。 11 月 16 日-19 日, 应韩月彭研究员的邀请,新西兰植物和食品研究所 Sue Gardiner Khan 教授来重点实验室,就苹果 SNP 的开发和应用进行学术交流。 3. 学术报告 序号 时间 报告人 1 2 月 22 日 Alice Hayward 2 3 月 23 日 魏孝义 3 3 月 30 日 Noni Franklin-Tong 报告人单位 报 告 题 目 澳大利亚昆士兰大 Genetic Diversity in the 学 Brassicaceae 中国科学院华南植 植物次生代谢产物及其生物 物园 学意义 Self-Incompatibility in 英国伯明翰大学 Papaver: cell-cell interactions that involve a network of 51 中国科学院植物种质创新与特色农业重点实验室 2011 年报 signaling events resulting in programmed cell death 4 4月2日 田大成 南京大学 非对称遗传现象的研究 Next generation sequencing 5 4月2日 罗明成 美国加州大学 technology for SNP discovery and high density genetic map construction Detecting gene-gene 6 4月6日 余维川 香港科技大学 interactions in genome-wide case-control studies 7 4 月 19 日 刘继红 挪威农业与环境研 究所 Plastid biotechnology for crop production: present status and future perspectives Tackling environmental 8 4 月 19 日 罗 宏 美国克莱姆森大学 stress: the role of small RNAs in plant response to drought and salinity in perennials 9 10 11 5月9日 7月4日 7月6日 韩继祥 Leandro Peña Jenny Xiao 美国 Conagen 生物 from lipid metabolism to 公司 stigma biology 西班牙瓦伦西亚农 业研究所 美国西格诺股份有 限公司 Genetic Engineering of Citrus: improvements on development and fruit quality Flexible and Cost-Effective High-throughput Screening Tool for Plant Genomics The making of flower color 12 8月2日 袁耀武 美国华盛顿大学 and shape: from molecular genetics to evolutionary ecology 13 14 9月5日 9 月 26 日 Muhammad Awais Khan Douglas D. Archbold Linkage map, QTL mapping 美国伊利诺伊大学 and association mapping in plants 美国肯塔基大学 52 Sorbitol metabolism and apple fruit development 中国科学院植物种质创新与特色农业重点实验室 2011 年报 Molecular and genetic approa 15 10 月 24 日 Serge Delrot ches on grapevine quality and 法国波尔多大学 adapation to water stress 16 17 10 月 24 日 Albert Glenn 11 月 12 日 Abbott 戴思兰 The peach genome: a model for fruiting and forest tree 美国克莱姆森大学 genetics and genomics 中国传统菊花品种遗传分析 北京林业大学 和利用潜力研究 4. 在研开放课题 序号 课题名称 起止时间 总经费 (万元) 负责人 依托学科组 禾本科抗病基因的综合分 1 布图的构建及禾本科不同 抗病基因家族的进化规律 2011.1-2012.12 3 陈炯炯 2011.1-2012.12 3 郑丹曼 2011.1-2012.12 3 付春华 2011.1-2012.12 3 徐庆国 2011.1-2012.12 3 刘海舟 2011.1-2012.12 3 刘义飞 2011.1-2012.12 3 张颖颖 2011.1-2012.12 3 吴亮其 植物应用基 因组学 的研究 2 3 4 5 6 苹果 MdMYB10 同源基因 的克隆与功能鉴定研究 金银花中绿原酸生物合成 与转化机理研究 节水常绿草坪种质筛选及 温度胁迫抗性机理研究 细胞质雄性不育恢复基因 Rfo 的起源及适应性进化 猕猴桃高维生素 C 种质创 新及鉴定 淫羊藿类胡萝卜素代谢基 7 因表达和化学成分积累的 相关性研究 8 商陆中逆境相关基因 PaNAC 的克隆与功能分析 53 果树分子育 种学 天然药物生 物合成学 草坪种质资 源学 种群遗传学 植物保育遗 传学 比较功能基 因组学 园艺作物生 物学 中国科学院植物种质创新与特色农业重点实验室 2011 年报 附录六 仪器设备 序号 资产名称 型号规格 价格(万元) 数量 1 PCR mastercycle5333 9.4 14 2 核酸提取仪 Fastprep220 6.9 1 3 超纯水系统 Millipore 5.5 2 4 显微镜 奥林巴斯 11.4 3 5 紫外分光光度计 PE-LAMBDA45 18.4 1 6 果实色度仪 美能达 CR-300 6.8 1 7 凝胶成像仪 ALPHA-IS2200 10.9 2 8 测序电泳仪 165-3804 6.6 2 9 梯度 PCR 仪 Mastercycler pro 7.2 3 10 电泳仪 6.1 2 11 超高速离心机 22.1 1 12 冷冻离心机 11.1 6 13 离心机 6.1 2 14 兰花岛喷雾系统 7.1 1 15 冰箱 KB240 6.2 1 16 液相色谱质谱仪 TSQ Quantum Access MAX 148 1 17 稳定同位素质谱仪 Delta V Advantage 176 1 电感耦合等离子质谱仪 X Series 2 ICP-MS 140 1 LI-6400 XTP 31.1 1 PAM-2500 29.3 1 18 19 20 便携式光合作用仪 台式 便携式调制叶绿素荧光 仪 21 流式细胞仪 Cyflow Space 28.3 1 22 定量 PCR 仪 CFXconnect 19.4 1 23 离心浓缩系统 refrigerated centrivap 11.8 1 24 气相色谱质谱联用仪 7890A+5975C 97.9 1 25 扫描电子显微镜 Quanta250 104.4 1 26 土壤碳通量系统 LGR908-0011 50.2 1 27 梯度气象监测系统 G2301、ZENO 140.3 1 28 涡动相关分析系统 89.3 1 PICARRO G2311-f;COASTAL ZENO 54 A New Species and One New Name in Castanopsis (Fagaceae) from Hainan, China Li Chen, Zi-Gang Zhang, Ying Hu, Xin-Wei Li,* and Jian-Qiang Li* Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, People’s Republic of China *Author for correspondence: lijq@rose.whiob.ac.cn ABSTRACT. A new species, Castanopsis glabrifolia J. Q. Li & Li Chen, and one new name, C. hsiensiui (X. M. Chen & B. P. Yu) J. Q. Li & Li Chen (Fagaceae), are described from Hainan, China. They both grow on sandy beaches. Castanopsis glabrifolia is closely related to C. chinensis (Spreng.) Hance, differing from it by having smaller leaves, shorter petioles, fewer secondary veins, and smaller cupules that are incompletely covered by shorter spines. Castanopsis chinensis var. hainanica X. M. Chen & B. P. Yu is treated as a new synonym of C. glabrifolia. The new name C. hsiensiui is proposed, based on C. hainanensis Merr. var. litoralis X. M. Chen & B. P. Yu, with the variety recognized at higher rank based on its glabrous branches and petioles, the smaller cupules with the external surfaces visible, and the nuts that are glabrous or sparsely pubescent near the apex. Key words: Castanopsis, China, Fagaceae, Hainan, IUCN Red List. In the first comprehensive revision of Castanopsis (D. Don) Spach (Fagaceae), Camus (1929) recorded 112 species with a taxonomic key and detailed descriptions of their respective morphology and anatomy. Her work was subsequently complemented by Barnett (1944), who recognized 119 species in 11 groups. Govaerts and Frodin’s (1998) World Checklist and Bibliography of Fagales included 134 species of Castanopsis, with 61 or 62 species recorded for China. Most recently, Huang and Chang (1998) and Huang et al. (1999) revised Chinese Castanopsis and accepted 63 species and 58 species in the Flora Reipublicae Popularis Sinicae and Flora of China treatments, respectively. This increasing number of taxa in Castanopsis is mostly due to the descriptions of new species and transfers published in the past several decades (Fu & Huang, 1989; Huang & Chang, 1990, 1996; Chen & Yu, 1991; Fu & Feng, 1992; Fu, 2001; Chen et al., 2009, 2010). During revision of Chinese Castanopsis, we recognize 66 species of this genus in China, based on extensive examination of herbarium specimens and field doi: 10.3417/2009103 investigation. In this paper, the following novelties are proposed. 1. Castanopsis glabrifolia J. Q. Li & Li Chen, sp. nov. TYPE: China. Hainan: Wenchang, Changmao of Daodong Forest Farm, Tiantou village, 14 Jan. 1978, Anonymous 9254 (holotype, IBSC 0034559). Figure 1. Castanopsis chinensis (Spreng.) Hance var. hainanica X. M. Chen & B. P. Yu, J. S. China Agric. Univ. 12: 93. 1991, syn. nov. TYPE: China. Hainan: Wenchang, 11 Dec. 1987, B. P. Yu 103158 (holotype, CANT). Species Castanopsidi chinensi (Spreng.) Hance affinis, sed ab ea foliis minoribus, petiolis brevioribus, nervis lateralibus utrinsecus paucioribus atque cupulis minoribus spinis brevioribus incomplete tectis differt. Trees; second-year twig cortices gray, branches red-brown after cortices dehisce, lenticels slightly raised; first-year branches and rachis of infructescences red-brown; branches, leaves, and rachis of inflorescences glabrous. Young leaves dark when dry, abaxially with few dotted brown scales; petioles 0.9– 1.5 cm, red-brown; leaves elliptic, rarely ovate, 3.5– 8.5( 10) 3 1.1–3( 4.5) cm, leathery and concolorous, bases cuneate, rarely rounded, margins with shallow to deep teeth, apex long acute; midvein from base to middle adaxially raised or flat, red-brown, secondary veins in 6 to 9 pairs on each side of midvein, adaxially flat. Rachis of infructescences 3.5–7 3 0.1–0.15 cm; cupule prolate ellipsoid, 1.1– 1.7 cm diam., sometimes basally short-stalked, splitting into 2 to 3 segments when mature, cupule spines 2.5–5.5 mm, scattered or connate at base and transversely united across 3 or 4 rings, the external cupule and spines sparsely covered with gray pubescence and scales. Fruit as 1 nut per cupule, prolate ellipsoid, glabrous or sparsely pubescent near apex, ca. 1.2 3 0.6–0.8 cm, scar basal, slightly raised, 0.4–0.7 cm diam. Distribution and habitat. Castanopsis glabrifolia has been collected from sandy beaches along the seashore of Wenchang County, Hainan. NOVON 21: 317–321. PUBLISHED ON 9 SEPTEMBER 2011. 56 Biochemical Systematics and Ecology 39 (2011) 526–535 Contents lists available at ScienceDirect Biochemical Systematics and Ecology journal homepage: www.elsevier.com/locate/biochemsyseco High allozymic diversity in natural populations of Mycoheterotrophic Orchid Gastrodia elata, an endangered medicinal plant in China Yuan-Yuan Chen a, Zhao-Xia Bao a, b, Zuo-Zhou Li a, * a Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden/Wuhan Institute of Botany, Chinese Academy of Sciences, Wuhan 430074, Hubei, PR China b C-Bons Cosmetics Chemical (Wuhan) CO., LTD, Wuhan 430058, Hubei, PR China a r t i c l e i n f o a b s t r a c t Article history: Received 18 May 2011 Accepted 16 July 2011 Available online 5 August 2011 Gastrodia elata Blume, a mycoheterotrophic orchid native to the Far East, is an endangered medicinal plant in China. Genetic variation among 19 natural populations of G. elata was examined in central China by using allozyme polymorphism (16 loci in six enzymatic systems). The species exhibited high level of genetic diversity (P ¼ 56.3%, A ¼ 2.2 and HE ¼ 0.221), which was mainly attributed to its perennial habit and mixed reproduction system (both sexual and asexual). Evident genetic differentiation in G. elata natural populations was suggested by FST ¼ 0.241. AMOVA analysis showed 31.3% of the total molecular variation was attributed to inter-population differentiation. Obvious genetic structure and genetic depauperation of some populations indicate forest fragmentation and overcollection have affected genetic variation of G. elata. A conservation strategy, which is conserving populations with great genetic distinction or high level of genetic variation from four management units, is recommended. Ó 2011 Elsevier Ltd. All rights reserved. Keywords: Gastrodia Orchidaceae Genetic diversity Population structure Gene flow Allozyme 1. Introduction There is particular concern about the conservation of Orchidaceae, primarily as a result of mass collection by plant sellers and enthusiasts, as well as habitat destruction and fragmentation (Hágsater and Dumont, 1996). Gastrodia R. Br. is a genus of the family Orchidaceae, mainly distributed in East Asia, Southeast Asia and Oceania. Unlike most other orchids which are famous for their pretty flowers, Gastrodia species have attracted the attention of global botanists because of its pharmaceutical value and its symbiotic association with fungi. Gastrodia plants, lacking green leaves and chlorophyll, are saprophytic perennial herbs comprising approximate 20 species in the world, and 13 Gastrodia species were found in China (Chen et al., 1999). The orchid G. elata Blume, a native of the Far East, is a very important Chinese herbal medicine, which has been widely used for treating headaches, vertigo, dizziness, epilepsy, rheumatism and paralysis in Asia (Tang and Eisenbrand, 1992; Zheng et al., 1997; Kim et al., 2003; Ahn et al., 2007). It is reported that the natural distribution of G. elata includes China’s southwest, northeast and central regions. It patchily grows in the glades or at the edge of forests in humid mountain areas with the altitude of about 400–3200 m (Chen et al., 1999; Wu et al., 2006), and the populations are isolated by lowlands with different environmental conditions. Although it has been extensively cultivated in China since 1970s (Xu, 1993), due to the increasing market demand, wild resources of G. elata have been destroyed rapidly with the decreasing number of populations and declining population size. The orchid has been listed as rare and endangered plant species in China and even in the world (Fu and Jin, 1992; the IUCN Red List of Threatened Species, http://www.iucnredlist.org). * Corresponding author. Tel.: þ86 27 87510331; fax: þ86 27 87510298. E-mail address: lizz@wbgcas.cn (Z.-Z. Li). 0305-1978/$ – see front matter Ó 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.bse.2011.07.013 57 www.ccsenet.org/jas Journal of Agricultural Science Vol. 3, No. 4; December 2011 Genetic Diversity and Genetic Structure in Natural Populations of Prunus davidiana Germplasm by SSR Markers Zhongping Cheng Wuhan Botanical Garden, Chinese Academy of Sciences Wuhan, Hubei 430074, China & Key Laboratory of plant Germplasm Enhancement and Specialty Agriculture Chinese Academy of Sciences, Wuhan, Hubei 430074, China E-mail: chenzp2000@hotmail.com Ksenija Gasic Department of Horticulture, Clemson University, Clemson, SC 29634, USA E-mail: kgasic@gmail.com Zhangli Wang Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, China E-mail:wzl5201@hotmail.com Xuzhong Chen Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, China E-mail:chenxu1974@hotmail.com Received: January 24, 2011 doi:10.5539/jas.v3n4p113 Accepted: February 14, 2011 Published: December 1, 2011 URL: http://dx.doi.org/10.5539/jas.v3n4p113 This work was partially funded by the Wuhan Bureau of Human Resources and Social Security; The Scientific and Technologic Plan of Wuhan Municipal Government (200920322141) and the Morning Light Program of the Wuhan Municipal Government for Young Scholars (985003074). Abstract Prunus davidiana, which is a wild species, can be used as rootstocks for cultivation of fruit trees, breeding germplasm for improving resistance to diseases and insects, pioneer trees for recovering vegetation in arid areas, decoration trees for parks and gardens, and a potential medicinal plant for human health. Despite the valuable characteristics of P. davidiana, the genetic variations of resources of P. davidiana remain unclear. In this study, we used seven natural populations (GE; GH; ST; SF; SJ; SY; NX short for Heshui, Gansu; Huating Gansu; Taibai, Shaanxi; Fuxian, Shaanxi; Jiaocheng, Shanxi; Yangquan, Shanxi; Xiji, Ningxia, respectively) of P. davidiana collected at distribution center in China to generate a fingerprint using 15 SSR markers by multifluorophore fragment analysis to assess transportability of the markers, genetic diversity and genetic structure within and among populations. Our data show that a 92% transportability rate was found from closely related species of P. davidiana based on SSR markers developed, and DNA polymorphisms were also detected among accessions by the selected SSR markers. The SSR markers amplified 137 alleles in total for all accessions with an average value of 9.13 alleles, ranging from the highest value of 15 alleles for UDP96-013 to the lowest value of 3 alleles for CPPCT017. Rare alleles, present at less than or equal to 5% of all accessions by marker, Published by Canadian Center of Science and Education 113 58 jfbc_429 914..931 DOI: 10.1111/j.1745-4514.2010.00429.x SIMULTANEOUS EXTRACTION AND ANALYSIS OF FOUR POLYPHENOLS FROM LEAVES OF LYCIUM BARBARUM L. J.Z. DONG1,2*, W.S. GAO3*, D.Y. LU1 and Y. WANG1,4 1 Key Laboratory of Pant Germplasm Enhancement and Speciality Agriculture Wuhan Botanical Garden Chinese Academy of Sciences Wuhan 430074, China 2 School of Biological Science and Technology Hubei University for Nationalities Enshi 445000, China 3 College of Horticulture Shenyang Agriculture University Shenyang 110161 China Accepted for Publication August 22, 2009 ABSTRACT Polyphenols are the important active compounds present in the leaves of wild Lycium barbarum L. By liquid chromatography–mass spectrometry, high-performance liquid chromatography and ultraviolet spectra analysis, the main polyphenols in the plant leaves were identified as rutin, chlorogenic acid, quercetin and kaempferol. Microwave-ultrasonic-assisted extraction (M-UAE) and ultrasonic-reflux extraction (URE) of the polyphenols were established in this study. The results showed that M-UAE was suitable for rapid extraction and quantitation of large numbers of samples, while URE was suitable for rapid extraction of massive materials. The simultaneous extraction and analysis of polyphenols from L. barbarum L. leaves by M-UAE were carried out. The effects of several important factors such as microwave pretreatment, ethanol concentration, ultrasonication temperature, the ratio of liquid to solid, and ultrasonication time were optimized. The highest extraction yields of the polyphenols was obtained with ethanol concentration of 70%, microwave preheating to 60C, ultrasonication temperature of 60C, the ratio of liquid to solid of 25 (mL/g), and ultrasonication time of 30 min. The mechanism of M-UAE extraction was investigated and discussed. URE and M-UAE proved to be fast, highly efficient and energy-saving. * Authors with equal contribution. 4 Corresponding author. TEL: 86-27- 87510771; FAX: 86-27-87510670; EMAIL: yingwang@ wbgcas.cn 914 Journal of Food Biochemistry 35 (2011) 914–931. © 2011 Wiley Periodicals, Inc. 59 jfbc_433 1047..1057 DOI: 10.1111/j.1745-4514.2010.00433.x RAPID EXTRACTION OF POLYSACCHARIDES FROM FRUITS OF LYCIUM BARBARUM L. JING-ZHOU DONG1,2, ZHI-CHENG WANG3 and YING WANG1,4 1 Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture Wuhan Botanical Garden, Chinese Academy of Sciences Wuhan 430074, China 2 Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei University for Nationalities, Enshi 445000, China 3 Department of biology and light industry Changsha Science and Engineering University Changsha, China Accepted for Publication September 18, 2009 ABSTRACT A microwave-ultrasonic-assisted extraction (MUAE) method and apparatus on polysaccharides from fresh fruits of Lycium barbarum was developed. The main parameters of the MUAE were optimized: microwave power of 500 W, microwave time of 10 min, ultrasonication time of 30 min, ultrasonication temperature of 50C and pH 9.0. The MUAE showed obvious advantages in short duration, high efficiency and saving energy in comparison with the traditional Soxhlet extraction. PRACTICAL APPLICATIONS This study can be considered as the first report on the extraction of polysaccharides with combination of microwave and ultrasonic from fresh fruits of Lycium barbarum. Compared with the traditional Soxhlet extraction method, the established MUAE can save energy (no drying fresh fruits) and cost, shorten extraction time, reduce extraction temperature and has great potential in large-scale extraction of polysaccharides from fresh fruits of L. barbarum and in the extraction of active compounds from other plant materials. 4 Corresponding author. TEL: +86-27-87510675; FAX: +86-27-87510670; EMAIL: yingwang@ wbgcas.cn Journal of Food Biochemistry 35 (2011) 1047–1057. © 2011 Wiley Periodicals, Inc. 60 1047 Gao et al. BMC Plant Biology 2011, 11:64 http://www.biomedcentral.com/1471-2229/11/64 RESEARCH ARTICLE Open Access Evolution of the rpoB-psbZ region in fern plastid genomes: notable structural rearrangements and highly variable intergenic spacers Lei Gao1, Yuan Zhou1, Zhi-Wei Wang1, Ying-Juan Su2* and Ting Wang1* Abstract Background: The rpoB-psbZ (BZ) region of some fern plastid genomes (plastomes) has been noted to go through considerable genomic changes. Unraveling its evolutionary dynamics across all fern lineages will lead to clarify the fundamental process shaping fern plastome structure and organization. Results: A total of 24 fern BZ sequences were investigated with taxon sampling covering all the extant fern orders. We found that: (i) a tree fern Plagiogyria japonica contained a novel gene order that can be generated from either the ancestral Angiopteris type or the derived Adiantum type via a single inversion; (ii) the trnY-trnE intergenic spacer (IGS) of the filmy fern Vandenboschia radicans was expanded 3-fold due to the tandem 27-bp repeats which showed strong sequence similarity with the anticodon domain of trnY; (iii) the trnY-trnE IGSs of two horsetail ferns Equisetum ramosissimum and E. arvense underwent an unprecedented 5-kb long expansion, more than a quarter of which was consisted of a single type of direct repeats also relevant to the trnY anticodon domain; and (iv) ycf66 has independently lost at least four times in ferns. Conclusions: Our results provided fresh insights into the evolutionary process of fern BZ regions. The intermediate BZ gene order was not detected, supporting that the Adiantum type was generated by two inversions occurring in pairs. The occurrence of Vandenboschia 27-bp repeats represents the first evidence of partial tRNA gene duplication in fern plastomes. Repeats potentially forming a stem-loop structure play major roles in the expansion of the trnY-trnE IGS. Background In contrast to nuclear and mitochondrial genomes, plant plastid (chloroplast) genomes (plastomes) are generally conserved in genome size, gene content and gene order [1-3]. This high conservation makes the plastid genes and genomes quite amenable for sequencing and be widely used in evolutionary and phylogenetic studies. Nevertheless, comparative genomics studies demonstrate that the plastomes of several vascular plant lineages such as lycophytes (Selaginellaceae) [4,5], gymnosperms (e.g. Pinaceae [6-8], Cupressaceae [9], Welwitschiaceae [7,10], Gnetaceae and Ephedraceae [7]) and various eudicot angiosperm lineages (e.g. Geraniaceae [2,11], Campanulaceae [12,13] and Fabaceae [14,15]), have experienced remarkable genomic changes including significant size variations, complex rearrangements as well as substantial gene losses. Many reports have shown that highly rearranged plastomes usually contain a large number of repetitive elements [2,11,12,16]. Furthermore, the distribution of the repeats also exhibits a tendency to flank the rearrangement endpoints, implying an association between the repeat and the rearrangement [2,9,11,12,16-18]. Recently, Maréchal and Brisson [19] specified that the suppression of recombination between repeats is of importance in the maintenance of plastome stability. Nevertheless, besides rearrangement endpoints, abundant repeats are also found in other regions of plastomes. For instance, extensive dispersed repeats have been found throughout the algae plastome of Chlamydomonas reinhardtii [20], and many direct repeats derived from partial duplication of their nearby trnY-GUA gene have been observed in Douglas-fir (Pseudotsuga menziesii) [21]. These findings highlight the structural and * Correspondence: suyj@mail.sysu.edu.cn; tingwang@wbgcas.cn 1 CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China 2 State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China Full list of author information is available at the end of the article © 2011 Gao et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 61 Journal of Experimental Botany, Vol. 62, No. 14, pp. 5117–5130, 2011 doi:10.1093/jxb/err215 Advance Access publication 10 July, 2011 This paper is available online free of all access charges (see http://jxb.oxfordjournals.org/open_access.html for further details) RESEARCH PAPER Integration of physical and genetic maps in apple confirms whole-genome and segmental duplications in the apple genome Yuepeng Han1,*, Danman Zheng2,*, Sornkanok Vimolmangkang2, Muhammad A. Khan2, Jonathan E. Beever3 and Schuyler S. Korban2,† 1 Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Moshan, Wuhan, 430074, PR China 2 Department of Natural Resources and Environmental Sciences, University of Illinois, 1201 W. Gregory, Urbana, IL 61801, USA 3 Department of Animal Sciences, University of Illinois, 1201 W. Gregory, Urbana, IL 61801, USA * These authors contributed equally to this work. To whom correspondence should be addressed. E-mail: korban@illinois.edu y Received 27 April 2011; Revised 6 June 2011; Accepted 8 June 2011 Abstract A total of 355 simple sequence repeat (SSR) markers were developed, based on expressed sequence tag (EST) and bacterial artificial chromosome (BAC)-end sequence databases, and successfully used to construct an SSR-based genetic linkage map of the apple. The consensus linkage map spanned 1143 cM, with an average density of 2.5 cM per marker. Newly developed SSR markers along with 279 SSR markers previously published by the HiDRAS project were further used to integrate physical and genetic maps of the apple using a PCR-based BAC library screening approach. A total of 470 contigs were unambiguously anchored onto all 17 linkage groups of the apple genome, and 158 contigs contained two or more molecular markers. The genetically mapped contigs spanned ;421 Mb in cumulative physical length, representing 60.0% of the genome. The sizes of anchored contigs ranged from 97 kb to 4.0 Mb, with an average of 995 kb. The average physical length of anchored contigs on each linkage group was ;24.8 Mb, ranging from 17.0 Mb to 37.73 Mb. Using BAC DNA as templates, PCR screening of the BAC library amplified fragments of highly homologous sequences from homoeologous chromosomes. Upon integrating physical and genetic maps of the apple, the presence of not only homoeologous chromosome pairs, but also of multiple locus markers mapped to adjacent sites on the same chromosome was detected. These findings demonstrated the presence of both genome-wide and segmental duplications in the apple genome and provided further insights into the complex polyploid ancestral origin of the apple. Key words: Genetic map, genome duplication, Malus3domestica, physical map, segmental duplication, simple sequence repeat. Introduction Apple is one of the most important fruit crops in the world. The apple belongs to the Rosaceae family. This family is composed of >100 genera and 3000 species, and has been traditionally divided into four subfamilies: Prunoideae (x¼8), Spiraeoideae (x¼9), Rosoideae (x¼7, or 8, or 9), and Maloideae (x¼17) (Potter et al., 2002). The taxonomic diversification within the Rosaceae family has led the Rosaceae community to select three species including apple, peach (Prunus persica), and diploid strawberry (Fragaria vesca) as model systems for genomics studies (Shulaev et al., 2008, 2011). To date, genomic studies have been extensively conducted for these three key Rosaceae fruit species. For example, genetic resources such as genetic linkage maps, bacterial artificial chromosome (BAC) libraries, expressed sequence tags (ESTs), microarrays, and genome-wide physical maps have been developed for apple (Xu et al., 2001; ª 2011 The Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. 62 Journal of Integrative Plant Biology 2011, 53 (10): 835–844 Research Article Gene Expression Profile Changes in Germinating Rice ∗ Dongli He1 , Chao Han1,2 and Pingfang Yang1 1 Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China 2 Graduate University of Chinese Academy of Sciences, Beijing 100049, China ∗ Corresponding author Tel(Fax): +86 27 8751 0956; E-mail: yangpf@wbgcas.cn Available online on 12 September 2011 at www.jipb.net and www.wileyonlinelibrary.com/journal/jipb doi: 10.1111/j.1744-7909.2011.01074.x Abstract Water absorption is a prerequisite for seed germination. During imbibition, water influx causes the resumption of many physiological and metabolic processes in growing seed. In order to obtain more complete knowledge about the mechanism of seed germination, two-dimensional gel electrophoresis was applied to investigate the protein profile changes of rice seed during the first 48 h of imbibition. Thirtynine differentially expressed proteins were identified, including 19 down-regulated and 20 up-regulated proteins. Storage proteins and some seed development- and desiccation-associated proteins were down regulated. The changed patterns of these proteins indicated extensive mobilization of seed reserves. By contrast, catabolism-associated proteins were up regulated upon imbibition. Semi-quantitative real time polymerase chain reaction analysis showed that most of the genes encoding the down- or upregulated proteins were also down or up regulated at mRNA level. The expression of these genes was largely consistent at mRNA and protein levels. In providing additional information concerning gene regulation in early plant life, this study will facilitate understanding of the molecular mechanisms of seed germination. Keywords: rice seed; two-dimensional gel electrophoresis; matrix assisted laser desorption; ionization-time of flight; semi-quantitative real time polymerase chain reaction; germination; proteomics; imbibition. He D, Han C, Yang P (2011) Gene expression profile changes in germinating rice. J. Integr. Plant Biol. 53(10), 835–844. 2007). The water uptake restores the metabolic activity of the seed from the physiological quiescent status and leads to extensive physiological and biochemical changes (Bewley 1997), including carbohydrate metabolism, signal transduction, gene expression and regulation of redox homeostasis. The embryo and endosperm play different roles in rice seed germination. The embryo contains most of the seed’s genetic information and development abilities. Upon imbibition, the embryo produces the phytohormone gibberellic acid, which is perceived by the aleurone layer initiating a signaling cascade that leads to synthesis and release of a variety of hydrolytic enzymes into the starchy endosperm for the degradation of storage compounds (Bethke et al. 1997). Degradation of the reserves will supply energy and carbon sources to the developing embryo for seedling establishment. In addition to Introduction Rice seed is the staple food for more than half of the world’s population, so its formation and subsequent germination have attracted extensive research. Seed germination is one of the most complex physiological processes in both rice and general plant growth and development. Large amounts of physiological and biochemical studies have been performed in order to elucidate the mechanism of seed germination (North 2010; Penfield 2009), but there remains a long road ahead before we obtain full understanding of its intricacies. Under optimal germination conditions, the rice seed weights increased rapidly during the first 20 h imbibition (phase I), and then experienced a stable stage until 50 h (phase II), after that, the seed weights continued to increase (Yang et al.  C 2011 Institute of Botany, Chinese Academy of Sciences 63 Proteomics 2011, 11, 2693–2713 2693 DOI 10.1002/pmic.201000598 RESEARCH ARTICLE Constructing the metabolic and regulatory pathways in germinating rice seeds through proteomic approach Dongli He1, Chao Han1,2, Jialing Yao3, Shihua Shen4 and Pingfang Yang1 1 Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, P. R. China 2 Graduate University of Chinese Academy of Sciences, Beijing, P. R. China 3 College of life science, Huazhong Agriculture University, Wuhan, P. R. China 4 The Research and Development Center for Energy Plants, Institute of Botany, Chinese Academy of Sciences, Beijing, P. R. China Construction of metabolic and regulatory pathways from proteomic data can contextualize the large-scale data within the overall physiological scheme of an organism. It is an efficient way to predict metabolic phenotype or regulatory style. We did protein profiling in the germinating rice seeds through 1-DE via LC MS/MS proteomic shotgun strategy. In total, 673 proteins were identified, and could be sorted into 14 functional groups. The largest group was metabolism related. The metabolic proteins were integrated into different metabolic pathways to show the style of reserves mobilization and precursor preparation during the germination. Analysis of the regulatory proteins indicated that regulation of redox homeostasis and gene expression also play important roles for the rice seed germination. Although transcription is unnecessary for the germination, it could ensure the rapidity and uniformity of germination. On the contrary, translation with the stored mRNA is required for the germination. This study will help us to further understand the metabolic style, regulation of redox homeostasis, and gene expression during rice seed germination. Received: September 20, 2010 Revised: February 23, 2011 Accepted: April 12, 2011 Keywords: Germination / Metabolic pathway / Plant proteomics / Rice / Seed 1 Introduction contrary, the orthodox seeds are dry and physiological quiescent after maturation. They can keep their viability over a long period of storage. Seed germination is the beginning of the second round of plant life cycle. In physiology, germination is defined as the process commencing with water uptake and ending at the protrusion of radicle [1]. Seed germination could be divided into three phases, fast water uptake (phase I), metabolism reactivation (phase II), and radicle emergence (phase III) [1]. Among them, phase II is the most critical stage during which all the necessary metabolic pathways and physiological processes are reactivated, and hence decision is made to initiate the germination or not. In some species, seeds can easily germinate under favorable conditions. While in others, specific treatments are required to break the dormancy. Regulation of seed germination is one of the critical adaptive traits in plants in the long history of evolution. Unfortunately, the Plant seeds provide staple food for the world population. In addition, they are also important for the plants life cycle. Most plants generate their progenies through seeds, which can help them to avoid the adverse or even extreme environmental conditions. There are two types of seeds: recalcitrant and orthodox seeds. The former one contains high water content and cannot be stored for a long time. On the Correspondence: Professor Pingfang Yang, Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, P. R. China E-mail: yangpf@wbgcas.cn Fax: 186-27-87510956 Abbreviations: ABA, abscisic acid; GA, gibberellin; SOD, superoxide dismutase; TCA, tricarboxylic acid; Usp, Universal stress protein Colour Online: See article online to view figures 1, 2, 4, 5 in colour. www.proteomics-journal.com & 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 64 J. Microbiol. Biotechnol. (2011), 21(7), 697–702 doi: 10.4014/jmb.1101.12040 First published online 31 May 2011 Isolation and Characterization of a Mesophilic Arthrospira maxima Strain Capable of Producing Docosahexaenoic Acid Hu, Hongjun, Yeguang Li, Chuntao Yin†, and Yexin Ouyang* Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, P. R. China Received: January 3, 2011 / Revised: April 4, 2011 / Accepted: April 5, 2011 A strain of the cyanobacterium Arthrospira was isolated from Lake Chahannaoer in northern China and was characterized according to microscopic morphology, photosynthetic oxygen-evolving activity, growth rate, and nutritional profile. Compared with thermophilic Arthrospira species occurring naturally in tropical and subtropical lakes, this isolate is mesophilic and grows optimally at ~20oC. The total protein, fatty acid, phycocyanin, carotenoid, and chlorophyll a contents were 67.6, 6.1, 4.32, 0.29, and 0.76 grams per 100 grams of dry weight, respectively. The strain is rich in polyunsaturated fatty acids (PUFAs). An essential omega-3 fatty acid, docosahexaenoic acid (DHA), was detected, and γ-linolenic acid (GLA) and DHA accounted for 28.3% of the total fatty acid content. These features of this newly isolated strain make it potentially useful in commercial mass culture in local areas or as a biofuel feedstock. It is also an alternative resource for studying the metabolic PUFA pathways and mechanisms of cold stress tolerance in cyanobacteria. long-chain polyunsaturated fatty acids (LC-PUFAs) such as eicosapentaenoic acid (EPA), γ-linolenic acid (GLA), and docosahexaenoic acid (DHA) [3, 9]. DHA, an omega-3 fatty acid, is essential for brain function, heart health, and infant development. DHA deficiency causes a variety of human diseases, such as brain disorders, infertility, Alzheimer’s disease, and cancer [32]. Adequate amounts of DHA must be obtained through the diet, as humans lack the ability to synthesize it de novo [2, 32]. For most people, the main dietary source of DHA is fatty fish; however, most of the DHA from cold-water fish originates in photosynthetic microalgae via the food chain, and is typically not suitable for use in infant formulas. The presence of EPA in fish oil significantly lowers growth rates and causes other developmental difficulties [2]. Moreover, the commercial production of LC-PUFAs derived from fish oil may also have some negative aspects, such as an unpleasant odor, the presence of cholesterol, and some safety issues related to the contaminant levels of various toxins accumulated in fish and further concentrated in their oils [2, 14]. In contrast, microalgae-derived PUFAs have no such drawbacks [14]. Recently, some microalgae, including diatoms, chrysophytes, cryptophytes, and dinoflagellates, have been shown to produce high levels of DHA [3, 9]. The DHA-enriched products derived from microalgae have recently become available for commercial use as animal feeds and health foods [2]. Nonetheless, high-DHA microalgae supplements are still in short supply [3, 9, 11]. Moreover, the DHA-enriched products derived from both fish oil and microalgae depend heavily on a series of complicated downstream processes. Hence, there is an urgent demand for the development of inexpensive and environmentally friendly systems to produce high-value DHA. Arthrospira (Spirulina) is an edible cyanobacterium that performs prokaryotic oxygen-evolving photosynthesis, converting CO2 into organic compounds using the energy from sunlight [7, 28]. It often dominates the plankton of warm lakes that have high carbonate/bicarbonate and pH Keywaords: Polyunsaturated fatty acids (PUFAs), docosahexaenoic acid (DHA), γ-linolenic acid (GLA), mesophilic, Arthrospira maxima During the past three decades, increasing attention has been paid to microalgal biotechnology owing to the potential to produce foodstuffs, industrial chemicals, compounds with therapeutic applications, and bioremediation solutions [2, 25]. Recently, there has been renewed interested in the utilization of microalgae as an alternative biodiesel feedstock because of their high oil content and rapid production of biomass [1, 11, 22]. Microalgal oil includes some critical *Corresponding author Phone: +86-27-87510252; Fax: +86-27-87510252; E-mail: yexin.ouyang@gmail.com † Current address: Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA 65 Author's personal copy Ecotoxicology and Environmental Safety 74 (2011) 2050–2056 Contents lists available at ScienceDirect Ecotoxicology and Environmental Safety journal homepage: www.elsevier.com/locate/ecoenv Toxic effect of NaCl on ion metabolism, antioxidative enzymes and gene expression of perennial ryegrass Tao Hu a, Hui-ying Li a, Xun-zhong Zhang b, Hong-ji Luo a, Jin-min Fu a,n a b Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Science, Wuhan City, Hubei 430074, PR China Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA a r t i c l e i n f o a b s t r a c t Article history: Received 9 May 2011 Received in revised form 5 July 2011 Accepted 16 July 2011 Available online 2 August 2011 Two-month old seedlings of perennial ryegrass (Lolium perenne L.) were subjected to four different levels of salinity for 7 days. The NaCl treatments reduced turf quality and normalized transpiration rates. Both chlorophyll (Chl) a and Chl b contents decreased in the grass exposed to 255 mM relative to the control. An increase in the lipid peroxidationin was observed. The activity of leaf superoxide dismutase increased while, peroxidase and catalase activities decreased in response to NaCl treatments. The expression of Chl Cu/ZnSOD, Cyt Cu/ZnSOD, FeSOD, CAT, POD, GPX and GR was up-regulated for NaCltreated grass. Salt stress increased accumulation of Na þ and decreased K þ /Na þ ratio, Mg2 þ and P content in both shoots and roots of perennial ryegrass. The findings of this study suggest that salt stress may cause toxicity to perennial ryegrass through oxidative injury and damage to Chl and cell membrane integrity. & 2011 Elsevier Inc. All rights reserved. Keywords: Ionic toxicity Salt stress Gene expression Antioxidant enzymes Perennial ryegrass 1. Introduction Excess soluble salts are the most common cause of plant suffering toxic substance restricts (Zhu, 2001). Salinity problem occurs not only in arid and semiarid regions, but also on fertility alluvial plain, valley, popular dense area and the coasts regions (Pessarakli and Szabolcs, 1999). Salt stress causes a series of physiological responses and inhibits the plant growth. In addition, there are 20% agricultural land and nearly 50% irrigated land affected by salinity worldwide (Rhoades and Loveday, 1990; Flowers and Yeo, 1995). When plants are exposed to salt stress, high apoplastic levels of Na þ accumulated in cells due to the open probability of outward-rectifying cation channels and insidenegative electrochemical gradient (Dc) (Schachtman et al., 1991; Niu et al., 1995). Additionally, excess Na þ in the plant cell can induce secondary effects of salinity phytotoxicity such as visible injuries, transpiration inhibition and physiological disorders (Zhu, 2001). Potassium cation (K þ ) as the major cationic inorganic nutrient is essential to all plant life. A high K þ /Na þ ratio has been considered as one of the important determinants of plant salt tolerance (Maathuis and Amtmann, 1999). The nutrient metabolism was disorder in the salt-stressed plants with a low level of K þ /Na þ ratio. n Corresponding author. E-mail address: jfu@wbgcas.cn (J.-m. Fu). There are increasingly evidences showing that environmental stresses, including salinity, cause oxidative stress and thus injury to plants through over production of reactive oxygen species  (ROS) such as superoxide radical (Od2 ), hydrogen peroxide (H2O2), hydroxyl radical (OHd) and singlet oxygen (1O2) (Dat et al., 2000). It has been reported that ROS triggered peroxidation of membrane lipid directly and then destroyed skeleton structure and function of cell membrane (Granger et al., 1986). In order to avoid these oxidative injuries, plants have developed antioxidant enzymatic systems for scavenging these highly active forms of ROS. Antioxidant enzymes, include superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), peroxidase (POD, EC 1.11.1.7), ascorbate peroxidase (APX, EC 1.11.1.11), glutathione peroxidase (GPX, EC 1.11.1.9) glutathione reductase (GR, EC  1.6.4.2), etc. The SOD and APX convert Od2 to hydrogen peroxide (H2O2) and molecular oxygen in the cell. The CAT and POD are the main enzymes for removing H2O2 in cytoplasm (Scandalios, 1993). In the chloroplast, H2O2 is cleaned up by joint action of APX, GPX and GR of ascorbate–glutathione cycle (Kuroda et al., 1992). Malondialdehyde (MDA) content as secondary breakdown product of lipid peroxidation has been widely used as an indicator of oxidative damage (Luna et al., 2008). Plants can increase level of salt tolerance by reprogramming the expression of endogenous genes. The smGTP gene was strongly induced in root and the COR413 gene was up-regulated by salt stress in all tissues of Lolium temulentum (Dombrowski et al., 2008). It was reported that HVA1 gene bearing transgenic rice induced the accumulation of the HVAl protein in both leaves 0147-6513/$ - see front matter & 2011 Elsevier Inc. All rights reserved. doi:10.1016/j.ecoenv.2011.07.013 66 Scientia Horticulturae 127 (2011) 555–561 Contents lists available at ScienceDirect Scientia Horticulturae journal homepage: www.elsevier.com/locate/scihorti Genetic diversity of Chinese natural bermudagrass (Cynodon dactylon) germplasm using ISSR markers Huiying Li, Li Liu, Yanhong Lou, Tao Hu, Jinmin Fu ∗ Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden/Wuhan Institute of Botany, Chinese Academy of Sciences, Wuhan 430074, Hubei, China a r t i c l e i n f o Article history: Received 18 August 2010 Received in revised form 18 November 2010 Accepted 1 December 2010 Keywords: Bermudagrass (Cynodon dactylon L.) Genetic diversity ISSR markers UPGMA cluster analysis Chinese accessions a b s t r a c t Bermudagrass (Cynodon dactylon L.) is an important warm-season turfgrass. Although it is widely distributed in China, studies on the genetic variation and relationship among the large-scale indigenous bermudagrass were relatively insufficient, especially at molecular level. The purpose of this study was to assess the molecular variation and relationship among one commercial cultivar ‘Tift3’ and 95 wild bermudagrass accessions collected from 11 provinces in China by ISSR marker technique. The results indicated that 29 ISSR primers generated a total of 248 bands among which 242 (97.6%) were polymorphic bands. The genetic similarity coefficients among accessions ranged from 0.51 to 0.97 with an average of 0.74. All accessions could be clustered into 11 groups with UPGMA method. Accessions from the same or adjacent regions generally were clustered into the same group or subgroups. A few accessions, however, were greatly different from the majority of all accessions. The results suggested that ISSR marker is an effective tool for the study of genetic variation in Chinese natural bermudagrass. © 2010 Elsevier B.V. All rights reserved. 1. Introduction Bermudagrass (Cynodon dactylon L.) is one of the most important warm-season grasses, which is extensively used in turf establishment and livestock herbage for its potential drought and heat tolerance and low maintenance requirements in warm temperate regions of the world (Beard, 1971; Harlan, 1970). Harlan and de Wet (1969) reported that wild bermudagrass grows between about lat 45◦ N and lat 45◦ S. In China, wild bermudagrass is abundant in the area south to the Yellow River, and sparsely scattered in northern regions including Xinjiang, Jilin, Qinghai, Gansu province, etc. (Tan and Tan, 1999). Bermudagrass germplasm can be identified through morphological characteristics, isozyme electrophoresis patterns, and molecular markers. Previous studies showed the extensive variation in morphological features, distributional patterns, and reproductive characteristics of bermudagass (Harlan and de Wet, 1969; Harlan, 1970; Harlan et al., 1970a,b,c). Molecular marker has been considered a preferred method for evaluating the genetic diversity of plant germplasm in the past years, since it could distinguish between highly related genotypes (Nybom, 1994). Genetic difference among bermudagrass plants was firstly discriminated using DNA profiling (Caetano-Anollés et al., 1995; Caetano-Anollés, 1998; Assefa et al., 1999). Etemadi et al. (2006) evaluated the ∗ Corresponding author. Tel.: +86 27 87510525; fax: +86 27 87510525. E-mail address: jfu@wbgcas.cn (J. Fu). 0304-4238/$ – see front matter © 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.scienta.2010.12.001 67 diversity of wild C. dactylon accessions collected from Iran based on randomly amplified polymorphic DNA (RAPD) technique. The genetic variations among cultivars or bermudagrass accessions come from different countries were also detected by amplified fragment length polymorphisms (AFLP) technique and sequencerelated amplified polymorphism (SRAP) (Zhang et al., 1999; Karaca et al., 2002; Wu et al., 2004; Wang et al., 2009). In China, there were increasing reports on the collection and assessment of indigenous bermudagrass. Liu et al. (1996) collected 88 bermudagrass accessions from 34 sites of East China, and found that they could be divided into five types, based on 19 morphological characters. Abulaiti et al. (1998) suggested that the bermudagrass germplasms collected from eight areas in Xinjiang province might be grouped into Yili and Kashi types, according to the morphological characters. At molecular level, Wu et al. (2006) founded that tetraploid C. dactylon was prevalent among Chinese indigenous Cynodon germplasm (mainly from Sichuan province) using flow cytometry, and genetic differentiation among different cytotypes was distinct based on AFLP markers. Researchers at Sichuan Agricultural University, China carried out a series of studies on the genetic variations among the wild bermudagrass accessions collected from five provinces in western China, using various molecular markers including SRAP, AFLP and ISSR (Liu et al., 2007; Yi et al., 2008; Ling et al., 2010; Qi et al., 2010). Abundant genetic diversity was observed among these accessions. However, there were some contrary conclusions in these studies. For example, Liu et al. (2007) found that the genetic relationship among native accessions was not strictly correlated with the geographi- CIELAB Coordinates in Response to Berry Skin Anthocyanins and Their Composition in Vitis Zhenchang Liang, Min Sang, Peige Fan, Benhong Wu, Lijun Wang, Shuhua Yang, and Shaohua Li C: Food Chemistry Abstract: Berry skin color OIV index, anthocyanin composition, and content of 78 grape cultivars were surveyed using a CIELAB system and high-performance liquid chromatography (HPLC)-mass spectrometry (MS) coupled with photodiode array detection. There were high correlations between L ∗ , b∗ , and color, while a∗ was not a representative parameter. L ∗ and b∗ values declined as berry skin color OIV became darker, and a∗ increased as berry skin color OIV became darker in pink and red grape cultivars only. The composition and content of anthocyanins varied widely among the cultivars. Total anthocyanins and types of anthocyanins were significantly correlated with color OIV parameters. Through multiple linear regression analysis, cyanidin derivatives had a positive effect on values of L∗ and b∗ . Delphinidin derivatives had positive effects on the value of a∗ . The CIELAB system gave good results for differentiation of grape berry skin color OIV. Keywords: anthocyanins, berry color OIV, CIELAB, grape, HPLC Introduction Grape skin color is mainly determined by the composition and content of anthocyanins (Heredia and others 1998; Malien-Aubert and others 2001). The composition and content of the anthocyanins in the skin vary widely with the genetic background (Heier and others 2002; Kallithraka and others 2009). Anthocyanins are comprised of cyanidin, delphinidin, petunidin, peonidin, and malvidin 3-monoglucosides (or 3, 5-diglucosides) along with an acyl (including acetyl, p-coumaroyl, and caffeoyl) group in colored cultivars. There are only 3-monoglucoside derivatives of anthocyanins in V. vinifera, while there are also 3, 5-diglucosides derivatives in other grape species (Heier and others 2002; Liang and others 2008). At present, there are many reports on grape berry, juice, and wine color evaluation using the CIELAB system, and there also has been much research on the composition and content of anthocyanins (Carreno and others 1995b; Carreño and others 1996; Prodanov and others 2005; Rolle and Guidoni 2007; Esparza and others 2009). Unfortunately, few have reported the relationship between color parameters using CIELAB coordinates and composition and content of anthocyanins in grape berry skin. Yet, breeding cultivars with new and/or improved berry skin color continues to be a high priority. Multiple linear regression analysis is a good statistical tool for analysis of the complicated relationship between CIELAB coordinates and berry skin anthocyanins, and has been used successfully in studying the relationship between color and pigment content in food chemistry (Melendez-Martinez and others 2003; Gomez-Miguez and others 2007; Han and others 2008). In this work, we analyzed the anthocyanin composition and content and measured the CIELAB coordinates of berry skin of 78 grape cultivars, and determined the relationship between berry MS 20101299 Submitted 11/16/2010, Accepted 1/19/2011. Authors Liang, skin color and anthocyanin compositions with multiple linear reFan, Wu, and Wang are with Inst. of Botany, Chinese Academy of Sciences, Beijing, gression analysis. Grape is one of the most important fruit crops and it is extensively grown around the world. There are many cultivars with a range of colors. Color plays an important role in the organoleptic qualities of grape, impacting the market value of table grapes and the quality of red wine and juice. The final berry color in grape is determined during maturation, and is affected by climate, fertilization, and irrigation among many factors during ripening (Carreno and others 1995a; Heredia and others 1998; Keller and others 1998; Delgado and others 2006; Yamane and Shibayama 2006; Azuma and others 2009). The International Organization of Vine and Wine (OIV) has a descriptor list for grape cultivars and Vitis species, with 7 groups for color of berry skins, including green-yellow, pink, red, red-grey, red-dark violet, blue-black, and red-black (OIV 1983). At present, the most popular methods for measuring the surface color of fruit and flowers involve instruments that measure surface reflectance. The CIELAB coordinates L ∗ , a∗ , and b∗ have been successfully used for description of berry and flower color (Wang and others 2001; George and Cenkowski 2007; Zhang and others 2007; Jia and others 2008; Osmani and others 2009). The L ∗ , a∗ , and b∗ values explain a 3-dimensional color space. The L ∗ value is the vertical axis and defines the lightness, and a∗ and b∗ values are perpendicular horizontal axes and define red-to-green and blueto-yellow, respectively. In addition, hue angle (H) and chroma (C ∗ ) can be calculated from a∗ and b∗ . H is distributed in the 4 quadrants of the a∗ and b∗ plane, and C ∗ is higher the further it is from the origin of the coordinate (Bakker and others 1986). 100093, P. R. China. Authors Liang and Li are with Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan 430074, P. R. China. Author Sang is with Inst. of Hydrobiology, Jinan Univ., Guangzhou 510632, P. R. China. Author Yang is with The Inst. of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China. Direct inquiries to author Li (E-mail: shhli@wbgcas.cn). C490 Material and Methods Plant material Seventy-eight genotype of grapes belonging to 6 color groups (Table 1) from the experimental vineyard of the Germplasm R  C 2011 Institute of Food Technologists doi: 10.1111/j.1750-3841.2011.02095.x Journal of Food Science r Vol. 76, Nr. 3, 2011 Further reproduction without permission is prohibited 68 Author's personal copy Euphytica (2011) 182:251–259 DOI 10.1007/s10681-011-0487-x Inheritance of sugar and acid contents in the ripe berries of a tetraploid 3 diploid grape cross population Zhenchang Liang • Min Sang • Aihong Ma • Shengjian Zhao • Gan-yuan Zhong • Shaohua Li Received: 12 May 2011 / Accepted: 5 July 2011 / Published online: 4 August 2011 Ó Springer Science+Business Media B.V. 2011 Abstract Inheritance patterns of sugar and organic acid contents of ripe berries in a tetraploid 9 diploid table grape cross population were investigated in two successive years. The population segregated for three different ploid levels: dipolids, triploids, and tetraploids. Sugar content in tetraploid progeny was significantly higher than that in the diploid progeny. Transgressive segregation for sugar content was observed in all the three ploid levels in the progeny population. The broad sense heritabilities (H2) of glucose, fructose and total sugar contents ranged from 0.68 to 0.79. The tetraploid progeny had the highest H2, followed by the diploid and triploid progeny. The sugar contents appeared additive as the ploid level increased. All the sugar contents were highly and positively correlated with each other. Malic acid in the diploid progeny population was significantly higher than that in the polyploid progeny populations, and the tartaric acid in the triploid progeny was significantly higher than that in diploid and tetraploid progenies. H2 of organic acids ranged from 0.71 to 0.91, with the tetraploids having the highest mean H2. In contrast with the sugar content, the total acid content was decreased as the ploid level increased. Positive correlations were also observed among the contents of various acids, but the correlation coefficient was low between tartaric acid and malic acid and moderate between tartaric acid and the total acids. A large range of variation was observed for both sugars and acids in the triploid and tetraploid progenies than in the diploid progeny. Z. Liang Beijing Key Laboratory of Grape Science and Wine Technology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People’s Republic of China Z. Liang  S. Li (&) Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, The Chinese Academy of Sciences, Wuhan 430074, People’s Republic of China e-mail: shhli@wbgcas.cn M. Sang Institute of Hydrobiology, Jinan University, Guangzhou 510632, People’s Republic of China Keywords Sugar  Organic acid  Inheritance  Polyploidy A. Ma  S. Zhao Institute of Fruits of Changli, Hebei Academy of Agriculture and Forestry, Hebei 066600, People’s Republic of China Introduction Grape (Vitis spp.), one of the most important fruit crops, is extensively cultivated in the world with a production of more than 7.23 9 106 tons in 2008 G. Zhong USDA-ARS Grape Genetics Research Unit, Geneva, NY 14456, USA 123 69 Mol Biol Rep (2011) 38:417–427 DOI 10.1007/s11033-010-0124-0 Ectopic expression of a grapevine transcription factor VvWRKY11 contributes to osmotic stress tolerance in Arabidopsis Huaying Liu • Wenlong Yang • Dongcheng Liu • Yuepeng Han • Aimin Zhang • Shaohua Li Received: 2 November 2009 / Accepted: 17 March 2010 / Published online: 31 March 2010 Ó Springer Science+Business Media B.V. 2010 Transgenic Arabidopsis seedlings overexpressing VvWRKY11 showed higher tolerance to water stress induced by mannitol than wild-type plants. These results clearly demonstrated that the VvWRKY11 gene is involved in the response to dehydration stress. In addition, the role of VvWRKY11 protein in regulating the expression of two stress response genes, AtRD29A and AtRD29B, is also discussed. Abstract Plant WRKY transcriptional factors play an important role in response to biotic and abiotic stresses. In this study, a WRKY transcription factor was isolated from grapevine. This transcription factor showed 66% and 58% identity at the DNA and amino acid sequence levels, respectively, with Arabidopsis AtWRKY11 genes, and was therefore designated VvWRKY11. Phylogenetic analysis and structure comparison indicated that VvWRKY11 protein belongs to group IIc. The VvWRKY11 protein was shown to be located in the nucleus based on green fluorescent protein analysis. Yeast one-hybrid analysis further indicated that VvWRKY11 protein binds specifically to the W-box element. The expression profile of VvWRKY11 in response to treatment with phytohormone salicylic acid or pathogen Plasmopara viticola is rapid and transient. Keywords WRKY transcription factor  Grapevine  Osmotic stress  Defense response Introduction Biotic and abiotic stresses negatively influence plant growth and crop productivity. Plants have evolved diverse defense mechanisms that enable them to adapt to environmental stresses [1]. A common feature of plant defense responses is the transcriptional activation of numerous genes upon external stimuli, including biotic and abiotic stresses [2]. Genes induced under stress conditions can be divided into two groups [3]. The first code for proteins that protect plants against environmental stresses, and the second are involved in signal transduction. For example, antifreeze proteins, manganese superoxide dismutases and FtsH proteins can enhance plant tolerance to cold, salt and drought stresses, respectively [4–6]. Protein kinases and phosphatases possess converse functions in signal transduction pathways [7, 8]. It has been reported that several kinds of transcription factor (TF) such as DREB, ERF, ZFP, QM, and WRKY are involved in response to various environmental stresses [9–13]. Therefore, it is clear that transcriptional regulation of plant defense-related genes is a vital part of plant defense responses [3]. Electronic supplementary material The online version of this article (doi:10.1007/s11033-010-0124-0) contains supplementary material, which is available to authorized users. H. Liu Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, People’s Republic of China H. Liu Graduate School of Chinese Academy of Sciences, 100049 Beijing, People’s Republic of China W. Yang  D. Liu  A. Zhang Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, People’s Republic of China Y. Han  S. Li (&) Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, 430074 Wuhan, People’s Republic of China e-mail: shhli@wbgcas.cn 123 70 Photosynthetic Responses to Heat Treatments at Different Temperatures and following Recovery in Grapevine (Vitis amurensis L.) Leaves Hai-Bo Luo1,2, Ling Ma1,2, Hui-Feng Xi1,2, Wei Duan1, Shao-Hua Li3, Wayne Loescher4, Jun-Fang Wang1,2, Li-Jun Wang1* 1 Beijing Key Laboratory of Viticulture and Enology, and Key Laboratory of Plant Resource Science, Institute of Botany, Chinese Academy of Sciences, Beijing, People’s Republic of China, 2 Graduate University of Chinese Academy of Sciences, Beijing, People’s Republic of China, 3 Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, People’s Republic of China, 4 College of Agriculture and Natural Resources, Michigan State University, East Lansing, Michigan, United States of America Abstract Background: The electron transport chain, Rubisco and stomatal conductance are important in photosynthesis. Little is known about their combined responses to heat treatment at different temperatures and following recovery in grapevines (Vitis spp.) which are often grown in climates with high temperatures. Methodology/Findings: The electron transport function of photosystem II, the activation state of Rubisco and the influence of stomatal behavior were investigated in grapevine leaves during heat treatments and following recovery. High temperature treatments included 35, 40 and 45uC, with 25uC as the control and recovery temperature. Heat treatment at 35uC did not significantly (P.0.05) inhibit net photosynthetic rate (Pn). However, with treatments at 40 and 45uC, Pn was decreased, accompanied by an increase in substomatal CO2 concentration (Ci), decreases in stomatal conductance (gs) and the activation state of Rubisco, and inhibition of the donor side and the reaction center of PSII. The acceptor side of PSII was inhibited at 45uC but not at 40uC. When grape leaves recovered following heat treatment, Pn, gs and the activation state of Rubisco also increased, and the donor side and the reaction center of PSII recovered. The increase in Pn during the recovery period following the second 45uC stress was slower than that following the 40uC stress, and these increases corresponded to the donor side of PSII and the activation state of Rubisco. Conclusions: Heat treatment at 35uC did not significantly (P.0.05) influence photosynthesis. The decrease of Pn in grape leaves exposed to more severe heat stress (40 or 45uC) was mainly attributed to three factors: the activation state of Rubisco, the donor side and the reaction center of PSII. However, the increase of Pn in grape leaves following heat stress was also associated with a stomatal response. The acceptor side of PSII in grape leaves was responsive but less sensitive to heat stress. Citation: Luo H-B, Ma L, Xi H-F, Duan W, Li S-H, et al. (2011) Photosynthetic Responses to Heat Treatments at Different Temperatures and following Recovery in Grapevine (Vitis amurensis L.) Leaves. PLoS ONE 6(8): e23033. doi:10.1371/journal.pone.0023033 Editor: Hany A. El-Shemy, Cairo University, Egypt Received March 2, 2011; Accepted July 4, 2011; Published August 26, 2011 Copyright: ß 2011 Luo et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Funding: This work was supported by the National Natural Science Foundation of China (No. 30771758) and the Knowledge Innovation Program of the Chinese Academy of Sciences (No. KSCX2-EW-J-1). No additional external funding was received for this study. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Competing Interests: The authors have declared that no competing interests exist. * E-mail: ljwang@ibcas.ac.cn ever, for different species, the specific effects of heat stress maybe different. Worldwide, grape has become one of the most productive and important specialty crops. In many production regions, the maximum midday air temperature can reach more than 40uC, which is especially critical at berry ripening. Some researchers suggested the optimum temperature for photosynthesis is between 25uC and 35uC for some grape cultivars [16,17]. Temperatures above 35uC generally reduce photosynthesis in grape leaves. Climate change may produce more frequent high temperature conditions close to the current northern limit of grape cultivation [18]. Extreme temperatures may therefore endanger berry quality and economic returns [19]. Although there are many reports dealing with the influence of heat stress to photosynthesis in grape Introduction High temperature negatively affects plant growth and survival and hence crop yield. Photosynthesis is known to be one of the most heat-sensitive processes, and it can be inhibited by high temperature before other symptoms of stress are detected [1,2]. Inhibition of photosynthesis by heat stress has long been attributed to an impairment of electron transport activity, especially the inhibition of photosystem II (PSII) activity [3,4]. Heat stress not only damages the oxygen-evolving complex of PSII [5,6], but also impairs electron transfer within the PSII reaction centres [7,8,9] and downstream of PSII. Some authors [10,11] have suggested that the initial site of the inhibition is associated with a Calvin cycle reaction, especially inactivation of Rubisco [12,13,14,15]. HowPLoS ONE | www.plosone.org 1 71 August 2011 | Volume 6 | Issue 8 | e23033 Ecotoxicology (2011) 20:770–778 DOI 10.1007/s10646-011-0628-y Antioxidant responses and gene expression in perennial ryegrass (Lolium perenne L.) under cadmium stress Hongji Luo • Huiying Li • Xunzhong Zhang • Jinmin Fu Accepted: 26 February 2011 / Published online: 26 March 2011  Springer Science+Business Media, LLC 2011 Abstract Perennial ryegrass (Lolium perenne L.), widely used in temperate climates, is one of turf grasses that enrich cadmium (Cd). The objective of this study was to explore the physiological responses and candidate gene expression in perennial ryegrass to Cd stress. Grasses were subjected to three levels of 0, 0.2, and 0.5 mM Cd for 7 days in the greenhouse. The results indicated that soluble protein content was lower in the Cd-treated perennial ryegrass compared to untreated plants. The Cd-treated perennial ryegrass exhibited a greater level of malondialdehyde and activity of the peroxidase (POD), catalase, and superoxide dismutase (SOD) relative to the control. The Cd stress induced up-regulated expression of FeSOD, MnSOD, Chl Cu/ZnSOD, Cyt Cu/ZnSOD, APX, GPX, GR and POD at 4–24 h after treatment began for perennial ryegrass. Results suggested that the gene transcript profile was related to the enzyme activity under Cd stress. Introduction Cadmium (Cd) is one of the most famous toxic environmental pollutants and a large amount of this chemical enters the environment annually due to mining operations, smelting of metals, alloy preparation, electroplating, municipal wastes, and phosphate fertilizers (Alloways 1990). Cd severely threats to animal and human health, because it is highly mobile and can easily enter the food chain (Wagner 1993). Phytoremediation of Cd-contaminated soils by plants have been reported (Soleimani et al. 2010), because plants can take up Cd and then transport it from roots to shoots (Daghan et al. 2010). A number of investigations have been done on the physiological and molecular mechanisms of heavy metal uptake, translocation and detoxification by different hyperaccumulators such as Arabidopsis halleri (Brooks 1998), Viola baoshanensis (Liu et al. 2004), Salsola kali (de la Rosa et al. 2004), Sedum alfredii (Yang et al. 2004), and Thlaspi praecox (Vogel-Mikuš et al. 2005, 2008). However, there have been few studies on the effects of Cd stress on the turfgrass. Higher plants are highly sensitive to Cd stress (Daghan et al. 2010). Cadmium promotes the accumulation of reactive oxygen species (ROS), causes severe damage to important cellular components, such as lipids, protein, DNA, and RNA (Foyer et al. 1994), and leads to a decreased growth, roll and chlorosis of leaf, and root necroses (Schutzendubel et al. 2001). These ROS include • superoxide radical (O-• 2 ), hydroxyl radical ( OH) and hydrogen peroxide (H2O2). Plants have evolved a complex antioxidant system (i.e., enzymatic and nonenzymatic detoxification mechanisms) for protecting potential cell injury against tissue dysfunction (Srivastava et al. 2004). The antioxidant enzymes, such as catalase (CAT), Keywords Perennial ryegrass  Cadmium  Gene expression  Antioxidant enzymes H. Luo  H. Li  J. Fu (&) Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Science, Wuhan City 430074, Hubei, People’s Republic of China e-mail: jfu@wbgcas.cn; jinminfu@gmail.com X. Zhang Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA 123 72 Contrasting Evolutionary Patterns of the Rp1 Resistance Gene Family in Different Species of Poaceae Sha Luo, ,1 Junhua Peng, ,2 Kunpeng Li,1 Min Wang,1 and Hanhui Kuang*,1 1 Key Laboratory of Horticulture Biology, Ministry of Education, and Department of Vegetable Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China 2 Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanic Garden, Chinese Academy of Science, Wuhan, Hubei, China These authors contributed equally to this work. *Corresponding author: E-mail: kuangfile@gmail.com. Associate editor: Neelima Sinha Disease-resistance genes (R-genes) in plants show complex evolutionary patterns. We investigated the evolution of the Rp1 R-gene family in Poaceae, and 409 Rp1 fragments were sequenced from 21 species. Our data showed that the common ancestor of Poaceae had two Rp1 loci, but the number of Rp1 locus in extant species varies from one to five. Some wheat and Zea genotypes have dozens of Rp1 homologues in striking contrast to one or two copies in Brachypodium distachyon. The large number of diverse Rp1 homologues in Zea was the result of duplications followed by extensive sequence exchanges among paralogues, and all genes in maize have evolved in a pattern of Type I R-genes. The high frequency of sequence exchanges did not cause concerted evolution in Zea species, but concerted evolution was obvious between Rp1 homologues from genera Zea and Sorghum. Differentiation of Type I and Type II Rp1 homologues was observed in Oryza species, likely occurred in their common ancestor. One member (Type II R-gene) in the Oryza Rp1 cluster did not change sequences with its paralogues, whereas the other paralogues (Type I R-genes) had frequent sequence exchanges. The functional Pi37 resistance gene in rice was generated through an unequal crossover between two neighboring paralogues followed by four point mutations. The Rp1 homologues in wheat and barley were most divergent, probably due to lack of sequence exchanges among them. Our results shed more light on R-gene evolution, particularly on the differentiation of Type I and Type II R-genes. Key words: Rp1, disease-resistance gene, copy number, gene conversion, gene cluster. stop codon. Paradoxically, some frameshift indels are present in all genes of a Type II R-gene lineage (Kuang et al. 2004). Second, Type II R-genes (as donors) rarely converted their paralogues though such a direction of gene conversion would not change the original function of the Type II R-gene. Third, some Type II R-gene lineages have very low frequencies in nature populations (Kuang et al. 2004; Shen et al. 2006). All these facts are against the hypothesis that the conservation of Type II R-genes are due to their critical functions. Physical proximity of homologues should not account for the differentiation of Type I and Type II R-genes either. Studies on RPP8 resistance gene homologues in Arabidopsis showed that frequent sequence exchanges occurred between homologues separated by 2.3 Mb (Kuang et al. 2008). In contrast, a Type I and Type II RPP8 homologue rarely had sequence exchanges between them though they are only 4 kb apart on chromosome V. Furthermore, Type I and Type II homologues or different lineages of Type I homologues interweave in some R-gene clusters, suggesting that physical proximity may not be responsible for the differentiation of Type I and Type II R-genes (Kuang et al. 2004, 2005). The grass family (Poaceae) is ideal for comparative genomics. Numerous genetic and genomic data are available Introduction More than 100 disease-resistance genes have been cloned from different plant species and approximately 80% of them encode nucleotide-binding site (NBS) and leucinerich repeat (LRR) domains (Liu et al. 2007). Many of the NBS–LRR–encoding genes (referred as R-genes in this article) are clustered in plant genomes (Meyers et al. 2003). The clustering of R-genes might facilitate sequence exchanges between paralogues and generating new resistance specificities (Mondragon-Palomino et al. 2002; Kuang et al. 2008). Indeed, a group of R-genes, termed Type I R-genes, are extensive chimeras, which were generated through frequent gene conversions between paralogues. However, another group of R-genes (Type II R-genes) had rare or no sequence exchanges with paralogues though they might be located in the same cluster as Type I R-genes (Kuang et al. 2004). The mechanisms underlying the differentiation of Type I and Type II R-genes remain unclear. The high conservation of each lineage of Type II R-genes might suggest their indispensable function, that is, important resistance specificity. However, several pieces of evidence are against the ‘‘function’’ hypothesis. First, some Type II R-genes are apparent pseudogenes with frameshift indels or premature © The Author 2010. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com Mol. Biol. Evol. 28(1):313–325. 2011 doi:10.1093/molbev/msq216 73 Advance Access publication August 16, 2010 313 Research article Abstract American Journal of Botany: e310–e315. 2011. AJB Primer Notes & Protocols in the Plant Sciences DEVELOPMENT OF MICROSATELLITE MARKERS IN ACTINIDIA ARGUTA (ACTINIDIACEAE) BASED ON THE NCBI DATA PLATFORM1 Yuping Man2,3, Yanchang Wang2,5, Lei Zhang2, Zuozhou Li2, Rui Qin3, Zhengwang Jiang2, Xiaorong Sun4, and Changjiang Liu4 2Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; 3School of Life Sciences, South Central University for Nationalities, Wuhan 430074, China; and 4Shenyang Agricultural University, Shenyang 110866, China • Premise of the study: Expressed sequence tag (EST)–derived microsatellite markers in Actinidia arguta were developed for genotyping and genetic mapping. • Methods and Results: One hundred and fifty EST–simple sequence repeat (SSR) primer pairs were obtained from the National Center for Biotechnology Information (NCBI) A. chinensis database using SSR Hunter 1.3. With the other 20 reported primers, 170 primer pairs were screened using 16 samples. A total of 72 primers pairs were successively developed for A. arguta. Fifteen of the developed markers were characterized in A. arguta populations from Changbai Mountain and Daba Mountain. The mean number of alleles per locus in the Changbai and Daba populations was 5.133 and 4.133, respectively. • Conclusions: Development of Actinidia ESTs from the NCBI database is an effective method of obtaining SSR markers for A. arguta. These markers will be useful for genome mapping and molecular breeding in A. arguta. Key words: Actinidia arguta; Actinidiaceae; microsatellite; polymorphism; population. Hardy kiwifruit (Actinidia arguta (Siebold & Zucc.) Planch. ex Miq.) is known as a smooth-skinned and cold-tolerant Actinidia species native to East Asia (Liang, 1983). The fruit of A. arguta has an edible skin, a sweeter taste, and a higher vitamin C content than the fruit of A. chinensis Planch. It is just beginning to be grown commercially in Canada, Chile, France, Japan, New Zealand, the United States, and China (Ferguson and Huang, 2007; Latocha, 2007). Through a survey of wild A. arguta growing in a restricted region of the Japanese archipelago (approximately 30°N–44°N latitude), it was confirmed that the species displays a wide range of variation in ploidy and physiological characteristics (Kataoka et al., 2010). Actinidia arguta is likewise one of the most widespread of all Actinidia species, being found in eastern Russia (as far north as the southwestern part of Sakhalin), Korea, and Japan and throughout much of China from Changbai Mountain in Heilongjiang and Jilin provinces in the north to Dawei Mountain of Yunnan Province in the south (22°N–47°N latitude) (Vorobiev, 1939; Liang, 1983). Because it is readily available and has many health benefits, A. arguta fruit has been successfully introduced to the marketplace by kiwifruit producers and sellers. The evaluation of wild populations of A. arguta has not been systematically conducted and breeding attempts have rarely been achieved, 1 Manuscript received 18 April 2011; revision accepted 8 June 2011. This research was supported by the Special Fund for Agro-scientific Research in the Public Interest of the People’s Republic of China (grant no. 200903013). 5 Author for correspondence: kiwifruit@wbgcas.cn doi:10.3732/ajb.1100182 although they are fundamental to commercial promotion of this species. Microsatellite (simple sequence repeat [SSR]) markers are a powerful tool for studying genetic diversity during the evaluation of natural resources and genetic mapping, which is an essential step for molecular breeding. Hundreds of SSR markers have been developed for A. chinensis; however, only a few microsatellite markers were available for A. arguta. Using sequences obtained from the National Center for Biotechnology Information (NCBI) data platform, we aimed to evaluate the transferability of expressed sequence tag (EST)– derived microsatellite markers from A. chinensis to A. arguta and successfully developed a set of 72 polymorphic markers for A. arguta. Fifteen of the developed microsatellite markers were characterized in two A. arguta populations. METHODS AND RESULTS EST sequences of A. chinensis were downloaded from the GenBank database in FASTA format. They were analyzed for the identification of SSR-containing sequences by SSR Hunter 1.3 (http://www.bio-soft.net/dna/SSRHunter .html) (Li and Wan, 2005). A total of 6507 out of 47 379 A. chinensis ESTs contained SSRs, and 150 with enough flanking sequences were randomly selected to design primers using Primer Premier 5.0 (PREMIER Biosoft International, Palo Alto, California, USA). In addition, 20 EST-SSRs developed by Fraser et al. (2004) were used in the following screening. Sixteen individuals collected from Pingjiang in Hunan Province (three individuals, A. chinensis), Maoba in Hubei Province (three individuals, A. deliciosa (A. Chev.) C. F. Liang & A. R. Ferguson), Changbai Mountain in Jilin Province (five individuals, A. arguta), and Daba Mountain in Sichuan Province (five individuals, A. arguta) were used for screening the 170 SSR markers. Total genomic DNA was extracted from fresh leaves using a cetyltrimethylammonium bromide (CTAB) protocol according to Doyle and Doyle (1987). PCR American Journal of Botany: e310–e315, 2011; http://www.amjbot.org/ © 2011 Botanical Society of America e310 74 American Journal of Botany: e229–e232. 2011. AJB Primer Notes & Protocols in the Plant Sciences DEVELOPMENT OF MICROSATELLITE LOCI FOR CEPHALOTAXUS OLIVERI (CEPHALOTAXACEAE) AND CROSS-AMPLIFICATION IN CEPHALOTAXUS1 Hua-Wei Pan2, Ying-Rong Guo3, Ying-Juan Su2,5, and Ting Wang4,5 2State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; 3Jiangxi Wildlife Protection and Management Administration, Nanchang 330038, China; and 4CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China • Premise of the study: Microsatellite loci were developed for Cephalotaxus oliveri, an endemic and endangered conifer in China, which will allow assessment of the levels of genetic diversity and a means to understand the genetic consequences of habitat fragmentation. • Methods and Results: Using the Fast Isolation by AFLP of Sequences COntaining (FIASCO) Repeats protocol, 19 microsatellite loci were identified in C. oliveri, 13 of which were polymorphic within a sample of 52 individuals representing five natural populations. The actual number of alleles per locus ranged from one to five. Twelve polymorphic loci were also successfully amplified in C. fortunei. • Conclusions: These microsatellite loci will provide a useful tool for further investigating genetic variation in natural populations of C. oliveri, which will inform future conservation and management strategies. Additionally, cross-amplification in C. fortunei suggested the potential utility of these loci in this and other congeneric species. Key words: Cephalotaxus oliveri; cross-species amplification; genetic diversity; microsatellite loci; population differentiation. Cephalotaxus oliveri Masters (Cephalotaxaceae) is an endemic conifer in China. It possesses anatomical, embryological, and karyotypic characters that are unique within Cephalotaxaceae (Shi et al., 2010). The species is a dioecious woody shrub or small tree up to 4 m in height, with leaves densely arranged on leafy shoots (Fu et al., 1999). Plants grow primarily in the understory of evergreen broad-leaved forests, where they occupy humid, shady niches (Fu et al., 1999). Restricted to China, C. oliveri is recorded in montane regions of northern Guangdong, Guizhou, western Hubei, Hunan, eastern Jiangxi, southern and western Sichuan, and eastern Yunnan, at altitudes between 300 and 1800 m (Fu et al., 1999). Its natural populations have long been disjunctly distributed, showing ecological characteristics of “old rare species” (Hilfiker et al., 2004). Moreover, the plant is also of important medicinal use; it contains the anticancer alkaloid harringtonine, which is effective in treating leucocythemia (Shi et al., 2010). Cephalotaxus oliveri is listed as an endangered plant of National Protection Grade II (Fu and Jin, 1992). Despite this protection, its population 1 Manuscript received 19 March 2011; revision accepted 13 April 2011. The authors thank Dr. Liao, Dr. Fan, Dr. Guo, and Mr. Liu for assistance with the collection of plant materials, and we specially thank Dr. Wood for correcting English and editing the manuscript. This work was supported by the National Natural Science Foundation of China (grant nos. 30170789, 30270153, 30771763, 30970290, and 31070594), the Innovative Program of the Chinese Academy of Sciences (KSCX2-YW-Z-0940), and the Opening Fund of Laboratory Sun Yat-sen University (2009). 5 Authors for correspondence: suyj@mail.sysu.edu.cn; tingwang@ wbgcas.cn doi:10.3732/ajb.1100128 sizes have been continuously declining over the past decades because of high rates of deforestation, other human-induced disturbances, overexploitation, and climate change (Fu and Jin, 1992). In this context, new sets of polymorphic simple sequence repeat (SSR) loci can be used to assess levels of genetic diversity and to understand genetic consequences of habitat fragmentation. Here, we developed 19 microsatellite loci in C. oliveri and tested their cross-amplification in the closely related C. fortunei Hook. METHODS AND RESULTS Microsatellite loci were developed in C. oliveri using a subtly modified FIASCO (Fast Isolation by AFLP Sequences COntaining Repeats) protocol from a DNA library enriched for various di-, tri-, and tetranucleotide repeats (Zane et al., 2002). Genomic DNA from leaf tissue of an individual plant in the Fanjingshan population was extracted by a modified cetyltrimethyl ammonium bromide (CTAB) method (Doyle and Doyle, 1987) and was completely digested with MseI (NEB, New England Biolabs, Ipswich, Massachusetts, USA). The digestion fragments were ligated to an MseI adaptor pair (5′-TACTCAGGACTCAT-3′/5′-GACGATGAGTCCTGAG-3′) using T4 DNA ligase (Fermentas, Glen Burmie, Maryland, USA) at 20°C for 3 h in a 30 μL volume. Five μL of the digestionligation was diluted by 10-fold were amplified with adaptorspecific primers (MseI-N, 5′-GATGAGTCCTGAGTAAN-3′) with 24 cycles of 94°C for 30 s, 53°C for 60 s, and an extension at 72°C for 60 s. To enrich the fragments containing simple sequence repeats, the amplified products were denatured at American Journal of Botany: e229–e232, 2011; http://www.amjbot.org/ © 2011 Botanical Society of America e229 75 Annals of Applied Biology ISSN 0003-4746 RESEARCH ARTICLE Genetic diversity and differentiation of lotus (Nelumbo nucifera) accessions assessed by simple sequence repeats L. Pan1,2 , Z.W. Quan1 , J.H. Hu1 , G.Y. Wang1 , S.N. Liu1 , Y. He1 , W.D. Ke3 & Y. Ding1,3 1 State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, Hubei, China 2 Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Chinese Academy of Sciences, Wuhan Botanical Garden, Wuhan, Hubei, China 3 Wuhan National Germplasm Repository for Aquatic Vegetables, Wuhan, Hubei, China Keywords Genetic diversity; microsatellite; Nelumbo nucifera; population structure. Correspondence Y. Ding, State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, China. Email: yiding@whu.edu.cn Received: 18 January 2011; revised version accepted: 7 August 2011 doi:10.1111/j.1744-7348.2011.00509.x Abstract Nelumbo nucifera (lotus) is a perennial aquatic crop of substantial economical and ecological importance. Currently, the evaluation of the genetic variation of lotus germplasm accessions using codominant simple sequence repeat (SSR) markers is significant, and it is essential for understanding the population structure of N. nucifera. Here we report the genetic diversity and differentiation of 92 N. nucifera accessions (82 cultivated varieties and 10 wild lotus) using 50 polymorphic SSR markers. A total of 195 alleles were detected, with an average of 3.9 alleles/locus. The mean polymorphic information content (PIC) and the mean expected heterozygosity were 0.43 and 0.50, respectively. The genetic relationships among accessions were estimated using an unweighted pair-group method with arithmetic average (UPGMA) cluster and principal coordinate analysis (PCA). Both methods revealed that the lotus accessions from China and those from its adjacent Asian countries formed a single cluster, respectively. The cultivated varieties were correlated with their major characteristics in cultivation (the seed, rhizome and flower type) rather than their geographic distribution. On the basis of the Bayesian model-based analyses, two genetically distinct groups (the seed lotus group and the rhizome lotus group) were generated, with a strong differentiation between them (FST = 0.57). The seed lotus group exhibited higher genetic diversity than did the rhizome lotus group. The results herein indicated that the current levels of genetic diversity and differentiation between the lotuses have been greatly influenced by artificial selection. Introduction Knowledge of the extent of genetic variation within germplasm collections and the genetic relatedness among genotypes is important for the effective utilisation, conservation and management of germplasm resources (Kresovich et al., 1995; Davila et al., 1998; Matus & Hayes, 2002). The species Nelumbo nucifera Gaertn., commonly known as lotus or sacred lotus, is a perennial aquatic plant. It is characterised by pinkish flowers, round leaves, ellipsoidal seeds and fleshy rhizomes and can be propagated either by sexual (seeds) or asexual (rhizomes) reproduction. This species is widely distributed in Asia and Australia. In China, N. nucifera spreads throughout most regions of the country (http://www.efloras.org/). Currently, N. nucifera is both an important economical crop and an ornamental plant in Asian countries. In addition to being popular for its ornamental flowers, many parts of the plant are consumed as vegetables, including its seeds, rhizomes, leaves and flowers. Lotus is also used medically for its antipyretic, hepatoprotective and antiobesity effects (Sinha et al., 2000; Sohn et al., 2003; Ono et al., 2006). China is considered to be one of the centres of the origin and diversity of lotus, which appeared as early as ∼135 million years ago (Ni & Zhao, 1987). Ann Appl Biol 159 (2011) 428–441 © 2011 The Authors Annals of Applied Biology © 2011 Association of Applied Biologists 428 76 Mol Breeding (2011) 28:281–301 DOI 10.1007/s11032-011-9608-4 REVIEW Domestication evolution, genetics and genomics in wheat Junhua H. Peng • Dongfa Sun • Eviatar Nevo Received: 10 January 2011 / Accepted: 15 June 2011 / Published online: 9 July 2011 Ó Springer Science+Business Media B.V. 2011 T. dicoccum and the goat grass Aegilops tauschii, most probably in the south and west of the Caspian Sea about 9,000 years ago. Wild emmer wheat has the same genome formula as durum wheat and has contributed two genomes to bread wheat, and is central to wheat domestication. Domestication has genetically not only transformed the brittle rachis, tenacious glume and non-free threshability, but also modified yield and yield components in wheat. Wheat domestication involves a limited number of chromosome regions, or domestication syndrome factors, though many relevant quantitative trait loci have been detected. On completion of the genome sequencing of diploid wild wheat (T. urartu or Ae. tauschii), domestication syndrome factors and other relevant genes could be isolated, and effects of wheat domestication could be determined. The achievements of domestication genetics and robust research programs in Triticeae genomics are of greatly help in conservation and exploitation of wheat germplasm and genetic improvement of wheat cultivars. Abstract Domestication of plants and animals is the major factor underlying human civilization and is a gigantic evolutionary experiment of adaptation and speciation, generating incipient species. Wheat is one of the most important grain crops in the world, and consists mainly of two types: the hexaploid bread wheat (Triticum aestivum) accounting for about 95% of world wheat production, and the tetraploid durum wheat (T. durum) accounting for the other 5%. In this review, we summarize and discuss research on wheat domestication, mainly focusing on recent findings in genetics and genomics studies. T. aestivum originated from a cross between domesticated emmer wheat J. H. Peng (&) Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, and Wuhan Botanical Garden, Chinese Academy of Sciences, Moshan, Wuhan 430074, Hubei, China e-mail: jpeng@lamar.colostate.edu J. H. Peng Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523-1170, USA Keywords Cultivated wheat  Wild emmer wheat  Evolution and domestication  Major domestication gene  Domestication-related QTL  Domestication syndrome factor D. Sun College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China e-mail: sundongfa1@mail.hzau.edu.cn Abbreviations Mya Million years ago BP Years before present SSR Simple sequence repeat E. Nevo Institute of Evolution, University of Haifa, Mount Carmel, Haifa 31905, Israel e-mail: nevo@research.haifa.ac.il 123 77 AJCS 5(9):1127-1143 (2011) ISSN:1835-2707 Invited Review Article Wild emmer wheat, Triticum dicoccoides, occupies a pivotal position in wheat domestication process Junhua Peng1, 2, 5*, Dongfa Sun3 and Eviatar Nevo4 1 Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, China Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Chinese Academy of Sciences, Wuhan, Hubei 430074, China 3 College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China 4 International Graduate Center of Evolution, Institute of Evolution, University of Haifa, Mount Carmel, Haifa 31905, Israel 5 Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523-1170, USA 2 *Corresponding author: junhuapeng@yahoo.com Abstract Domestication of plants and animals is the major factor underlying human civilization. Cultivated wheats refer mainly to two types: the hexaploid bread wheat (Triticum aestivum) accounting for about 95% of world wheat production, and the tetraploid durum wheat (T. durum) accounting for the other 5%. T. aestivum derived from a cross between domesticated emmer T. dicoccum and the goat grass Aegilops tauschii, which most probably originated in the south or west of the Caspian Sea about 9,000 years ago. T. dicoccoides, the wild emmer wheat, is the progenitor of cultivated wheats, has the same genome formula as durum wheat and has contributed two genomes to bread wheat, and has played a core role to wheat domestication. This process of wheat domestication fits the gradual and multi-site model rather than the fast and single-site model. Domestication has genetically not only transformed the brittle rachis, tenacious glume and non-free threshability, but also modified yield and yield components in wheat. Wheat domestication is only involved in a limited number of chromosome regions, or domestication syndrome factors, though many relevant quantitative trait loci were detected. The available crop genome sequences and genome sequencing of wheat can transform today’s biology, dramatically advancing both theory and application of wheat domestication study. The nonrandom adaptive processes and complexes in T. dicoccoides and other wheat relatives could provide the basis for wheat improvement as single genes, QTLs, and interacting biochemical networks. Genome sequencing of diploid wild wheat, either T. urartu or Ae. tauschii, could be helpful for isolation of domestication syndrome factors and other relevant genes. The distinct adaptive complexes of T. dicoccoides to environmental stresses is of great importance for improvement of bread wheat. Keywords: Cultivated wheat, Wild emmer wheat, Evolution and domestication, Major domestication gene, Domestication-related quantitative trait locus, Domestication syndrome factor, Gene-rich regions. Introduction Domestication of plants and animals dramatically promoted human cultural development and is the major factor underlying human civilization. Domestication performed by humans primarily during the last 10,000 years is a gigantic evolutionary experiment of adaptation and speciation generating incipient species (Darwin, 1905; Zohary and Hopf, 2000; Feldman and Kislev, 2007). It leads to adaptive syndromes fitting human ecology (Harlan, 1992). Domestication and the emergence of agricultural economies from pre-agricultural ones established human sedentism, urbanization, culture, and an unprecedented population explosion. Domestication makes all the cultivars, including wheat human-dependent, capable of surviving only under cultivation in human agricultural niches to meet human needs and culture. Wheat is the universal cereal of Old World agriculture and the world’s foremost crop plant (Zohary and Hopf, 2000; Feldman et al., 1995; Gustafson et al., 2009), followed by rice and maize. Wheat was among the earliest domesticated crop plants, dating back 10,000 years ago in the pre-pottery Neolithic Near East Fertile Crescent (Harlan and Zohary, 1966). Modern wheat cultivars usually refer to two species: hexaploid bread wheat, Triticum aestivum (2n = 6x = 42, AABBDD), and tetraploid, hard or durum-type wheat, T. turgidum durum (2n = 4x = 28, AABB), used for macaroni and low-rising bread. Other species are relict (for a detailed account see Zohary and Hopf, 2000; Gill et al., 2006, 2007; Feldman and Kislev, 2007). Bread wheat accounts for about 95% of world wheat production. The other 5% is durum wheat. Today, wheat ranks first in the world’s grain production and accounts for more than 20% of the total human food calories. Wheat is now extensively grown on 17% of all crop areas, in the temperate, Mediterranean-type, and subtropical parts of both world hemispheres from 67˚N to 45˚S. It is the major cereal crop of temperate regions and is the staple food for 40% of the world’s population (faostat.fao.org; www.croptrust.org). The world’s main wheat-producing regions are in temperate and southern Russia, the central plains of the US, southern Canada, the Mediterranean basin, north-central China, India, Argentina, and southwestern Australia. Human history is closely correlated with development of wheat, barley, and possibly rye because they belong to the Neolithic founder crops 1127 78 Sen et al. Biology Direct 2011, 6:29 http://www.biology-direct.com/content/6/1/29 RESEARCH Open Access Molecular evolution of rbcL in three gymnosperm families: identifying adaptive and coevolutionary patterns Lin Sen1,2, Mario A Fares3,4, Bo Liang5,6, Lei Gao1, Bo Wang1,2, Ting Wang1* and Ying-Juan Su7* Abstract Background: The chloroplast-localized ribulose-1, 5-biphosphate carboxylase/oxygenase (Rubisco), the primary enzyme responsible for autotrophy, is instrumental in the continual adaptation of plants to variations in the concentrations of CO2. The large subunit (LSU) of Rubisco is encoded by the chloroplast rbcL gene. Although adaptive processes have been previously identified at this gene, characterizing the relationships between the mutational dynamics at the protein level may yield clues on the biological meaning of such adaptive processes. The role of such coevolutionary dynamics in the continual fine-tuning of RbcL remains obscure. Results: We used the timescale and phylogenetic analyses to investigate and search for processes of adaptive evolution in rbcL gene in three gymnosperm families, namely Podocarpaceae, Taxaceae and Cephalotaxaceae. To understand the relationships between regions identified as having evolved under adaptive evolution, we performed coevolutionary analyses using the software CAPS. Importantly, adaptive processes were identified at amino acid sites located on the contact regions among the Rubisco subunits and on the interface between Rubisco and its activase. Adaptive amino acid replacements at these regions may have optimized the holoenzyme activity. This hypothesis was pinpointed by evidence originated from our analysis of coevolution that supported the correlated evolution between Rubisco and its activase. Interestingly, the correlated adaptive processes between both these proteins have paralleled the geological variation history of the concentration of atmospheric CO2. Conclusions: The gene rbcL has experienced bursts of adaptations in response to the changing concentration of CO2 in the atmosphere. These adaptations have emerged as a result of a continuous dynamic of mutations, many of which may have involved innovation of functional Rubisco features. Analysis of the protein structure and the functional implications of such mutations put forward the conclusion that this evolutionary scenario has been possible through a complex interplay between adaptive mutations, often structurally destabilizing, and compensatory mutations. Our results unearth patterns of evolution that have likely optimized the Rubisco activity and uncover mutational dynamics useful in the molecular engineering of enzymatic activities. Reviewers: This article was reviewed by Prof. Christian Blouin (nominated by Dr W Ford Doolittle), Dr Endre Barta (nominated by Dr Sandor Pongor), and Dr Nicolas Galtier. * Correspondence: tingwang@wbgcas.cn; suyj@mail.sysu.edu.cn 1 CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China 7 State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China Full list of author information is available at the end of the article © 2011 Sen et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 79 Biochemical Systematics and Ecology 39 (2011) 769–777 Contents lists available at ScienceDirect Biochemical Systematics and Ecology journal homepage: www.elsevier.com/locate/biochemsyseco Phylogeny and evolutionary divergence times in Apterosperma and Euryodendron: Evidence of a Tertiary origin in south China Yingjuan Su a, Wenbo Liao a, Ting Wang b, c, *, Yufei Sun a, Qiang Wei d, Hungta Chang a a State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China c Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China d South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China b a r t i c l e i n f o a b s t r a c t Article history: Received 19 January 2011 Accepted 16 July 2011 Available online 8 September 2011 Apterosperma and Euryodendron, monotypic genera in Theaceae (sensu lato), are endemic and restrictedly distributed in south China. The two genera are not included in the major classification systems. However, their systematic position and origin have been subject to intense debate in the last decade. In this study, the phylogeny and divergence times of both Apterosperma and Euryodendron were inferred using combined dataset of chloroplast DNA trnL-F and atpB-rbcL non-coding sequences and nrDNA ITS sequences. The results from Bayesian inference, maximum parsimony, and maximum likelihood consistently showed that (i) Euryodendron is a valid genus, which is closer to Eurya than to Cleyera and (ii) Apterosperma is a genus of the tribe Theeae along with Tutcheria and Camellia. It was first reported that the divergence time of Apterosperma was 61.98 million years ago (mya), whereas that of Euryodendron 20.51 mya, indicating Tertiary origins in south China. The divergence of Apterosperma appears to be the result of increased ecological opportunity after Cretaceous/Tertiary extinction events and related with high temperatures and high humidity environments. By contrast, the origin of Euryodendron may be associated with historical mountain building events as well as the significant climate changes that established cooler temperatures prevailing until today. Ó 2011 Elsevier Ltd. All rights reserved. Keywords: Apterosperma Euryodendron Phylogeny Evolutionary divergence times trnL-F atpB-rbcL nrITS 1. Introduction Theaceae (sensu lato) is a large and complicated family that includes 40 genera and 600 species (Cronquist, 1981). It was divided into two subfamilies, namely the Ternstroemioideae and the Theoideae (Thorne, 1992; Takhtajan, 1997); each has been raised to separate families based on molecular data that show from single gene to three-gene differences (Morton et al., 1996, 1997; APG, 1998; Savolainen et al., 2000; Soltis et al., 2000; Prince and Parks, 2001). In the recent angiosperm phylogeny system, Ternstroemioideae has been removed from Theaceae and forms Ternstroemiaceae together with Pentaphylax (Pentaphylacaceae) (Stevens, 2006; Wu et al., 2007). Nevertheless, the generic identities of Theaceae and Ternstroemiaceae remain controversial such as in Airy-Shaw’s (1936), Sealy’s (1958), Keng’s (1962), Melchior’s (1964), Cronquist’s (1981), Dahlgren’s (1983), Goldberg’s (1986), Thorne’s (1992), and Takhtajan’s (1997) classification systems. Specifically, the * Corresponding author. Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China. Tel.: þ86 27 87510677; fax: þ86 27 87510251. E-mail address: tingwang@wbgcas.cn (T. Wang). 0305-1978/$ – see front matter Ó 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.bse.2011.07.004 80 Journal of Experimental Botany, Vol. 62, No. 15, pp. 5641–5658, 2011 doi:10.1093/jxb/err249 Advance Access publication 23 August, 2011 This paper is available online free of all access charges (see http://jxb.oxfordjournals.org/open_access.html for further details) RESEARCH PAPER Flowering time variation in oilseed rape (Brassica napus L.) is associated with allelic variation in the FRIGIDA homologue BnaA.FRI.a 1 Plant Breeding Institute, Christian-Albrechts-University of Kiel, Olshausenstr. 40, D-24098 Kiel, Germany Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China 3 College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400716, China 4 State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310029, China 5 National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China 2 * To whom correspondence should be addressed. E-mail: a.mueller@plantbreeding.uni-kiel.de Received 9 May 2011; Revised 20 July 2011; Accepted 22 July 2011 Abstract Oilseed rape (Brassica napus L.) is a major oil crop which is grown worldwide. Adaptation to different environments and regional climatic conditions involves variation in the regulation of flowering time. Winter types have a strong vernalization requirement whereas semi-winter and spring types have a low vernalization requirement or flower without exposure to cold, respectively. In Arabidopsis thaliana, FRIGIDA (FRI) is a key regulator which inhibits floral transition through activation of FLOWERING LOCUS C (FLC), a central repressor of flowering which controls vernalization requirement and response. Here, four FRI homologues in B. napus were identified by BAC library screening and PCR-based cloning. While all homologues are expressed, two genes were found to be differentially expressed in aerial plant organs. One of these, BnaA.FRI.a, was mapped to a region on chromosome A03 which colocalizes with a major flowering time quantitative trait locus in multiple environments in a doubled-haploid mapping population. Association analysis of BnaA.FRI.a revealed that six SNPs, including at least one at a putative functional site, and one haplotype block, respectively, are associated with flowering time variation in 248 accessions, with flowering times differing by 13–19 d between extreme haplotypes. The results from both linkage analysis and association mapping indicate that BnaA.FRI.a is a major determinant of flowering time in oilseed rape, and suggest further that this gene also contributes to the differentiation between growth types. The putative functional polymorphisms identified here may facilitate adaptation of this crop to specific environments through markerassisted breeding. Key words: Association mapping, B. napus, flowering time, FRI, growth type, QTL, vernalization requirement. Introduction Oilseed rape or rapeseed (Brassica napus L.) is one of the most important oilseed crops worldwide. B. napus is an allotetraploid species with 2n¼38 chromosomes and two genomes, AA derived from B. rapa and CC from B. oleracea. Because of its high seed oil and protein content, rapeseed is mainly grown as animal feed, for the production of vegetable oil for human consumption, and for biodiesel production. The yield potential of rapeseed to a large extent depends on flowering time, and flowering time adaptation is a major breeding goal. Three different growth types can be ª 2011 The Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. 81 Downloaded from http://jxb.oxfordjournals.org/ at Wuhan Botanical Garden, CAS on January 5, 2012 Nian Wang1,2, Wei Qian1,3, Ida Suppanz1, Lijuan Wei3, Bizeng Mao1,4, Yan Long5, Jinling Meng5, Andreas E. Müller1,* and Christian Jung1 82 American Journal of Botany: e123–e126. 2011. AJB Primer Notes & Protocols in the Plant Sciences CHLOROPLAST MICROSATELLITE MARKERS IN LIRIODENDRON TULIPIFERA (MAGNOLIACEAE) AND CROSS-SPECIES AMPLIFICATION IN L. CHINENSE1 Ai-Hong Yang2,3, Jin-Ju Zhang4, Xiao-Hong Yao2, and Hong-Wen Huang5,6 2Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, Hubei, China; 3Graduate School of the Chinese Academy of Sciences, Beijing 100039, China; 4College of Life Sciences, Jiangxi Normal University, Nanchang 330022, Jiangxi, China; and 5Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, Guangdong, China • Premise of the study: A set of cpSSR markers were developed for the tree genus Liriodendron L. to investigate population genetic structure and phylogeographic history. • Methods and Results: Primers were designed directly from the chloroplast genome sequences of Liriodendron tulipifera. Among the 55 cpSSR markers tested, 11 polymorphic markers were identified in L. tulipifera. The number of alleles in the population tested ranged from two to five, and the unbiased haploid diversity per locus ranged from 0.074 to 0.644. Eighteen primer pairs generated polymorphic amplification in L. chinense. The number of alleles per locus ranged from two to seven, and the unbiased haploid diversity per locus was from 0.250 to 0.964. • Conclusions: cpSSR markers developed here will be useful for phylogeography and population genetics studies of Liriodendron. Key words: cpSSR; Liriodendron chinense; Liriodendron tulipifera; phylogeography; population genetics. Trees in the genus Liriodendron L. (Magnoliaceae) were once widely distributed in the Northern Hemisphere and comprised several species (Latham and Ricklefs, 1993). However, extinctions caused by Late Tertiary climate oscillations and the Pleistocene glaciations left only two species: L. tulipifera L. and L. chinense (Hemsl.) Sarg., which display an eastern Northern American and eastern Asian disjunction found in many temperate zone tree genera (Xiang et al., 2000). Liriodendron tulipifera is a fast-growing timber tree that is widespread and common in eastern Northern American broad-leaf forests, while L. chinense is an endangered species that displays similar ecological traits, but occurs in small and isolated populations in southern China and northern Vietnam (Hao et al., 1995). Despite the significant value of L. tulipifera and the endangered status of L. chinense, information on their population genetic structure and geographic variation is limited (Sewell et al., 1996) and could be enhanced with the development of reliable and polymorphic molecular markers. The available chloroplast genome sequences of L. tulipifera (Cai et al., 2006) offer potential sources for the development of chloroplast microsatellite 1 Manuscript received 27 December 2010; revision accepted 12 January 2011. The authors thank Christopher Dick for helpful discussions and polishing English. This work was partly supported by the KIP Pilot Project of the Chinese Academy of Sciences (KSCX2-EW-Q-16) and the Foundation of the Director of the Wuhan Botanical Garden, Chinese Academy of Sciences (O754581A09). 6 Author for correspondence: huanghw@mail.scbg.ac.cn. doi:10.3732/ajb.1000532 (cpSSR) markers, which are widely used in population genetic and evolutionary studies of plants (Provan et al., 2001). Here we report on a set of cpSSRs derived from the chloroplast genome of L. tulipifera and evaluate their transferability in L. chinense. METHODS AND RESULTS The cpSSRs were screened from the chloroplast genome sequences of L. tulipifera using WebSat (http://wsmartins.net/websat). The screening criteria were set for detection of mono, di-, and trinucleotide motifs with a minimum of ten, six, and five repeats, respectively. A total of 64 simple cpSSRs were yielded, including one trinucleotide repeat, three dinucleotide repeats, and 60 mononucleotide repeats. Nine cpSSRs contained low GC content in the flanking region and were excluded from primer design. Locus-specific primers were designed for the remaining 55 cpSSRs using the PRIMER 3 web interface program (http://frodo.wi.mit.edu/primer3/). To assess polymorphism, genomic DNA was extracted from young leaves of eight individuals of L. tulipifera using the CTAB method (Doyle and Doyle, 1987). Polymerase chain reactions (PCRs) were performed in a 10-µL reaction solution containing 40 ng genomic DNA, 10 mM Tris–HCl (pH 8.4), 50 mM (NH4)2SO4, 2.0 mM MgCl2, 0.2 mM dNTPs, 0.25 µM each primer, and 0.5 unit Taq polymerase (Fermentas, Vilnius, Lithuania). The amplification protocol used an initial denaturing at 94°C for 4 min, followed by 30 cycles of 45 s at 94°C, 45 s at the appropriate annealing temperature (see Table 1 for details) and 1 min at 72°C, ending with a final extension at 72°C for 8 min. Amplified products were separated on 6% denaturing polyacrylamide gels and visualized by silver staining. A 25-bp DNA ladder was used to identify alleles. Of the 55 cpSSR markers tested, 37 generated successful amplification products, and 11 of these loci were polymorphic. The genetic variability of the 11 polymorphic markers was estimated by genotyping 27 individuals randomly sampled from a seedling population of L. tulipifera (Jurong, Jiangsu, China, 32°06′36″N, 119°13′12″E) introduced from the United States. Population genetic parameters were calculated using GenAlEx 6.1 software American Journal of Botany: e123–e126, 2011; http://www.amjbot.org/ © 2011 Botanical Society of America e123 83 Food Chemistry 128 (2011) 823–830 Contents lists available at ScienceDirect Food Chemistry journal homepage: www.elsevier.com/locate/foodchem Volatile compounds evolution of three table grapes with different flavour during and after maturation Chunxiang Yang a,b, Yiju Wang a, Benhong Wu a, Jinbao Fang c, Shaohua Li b,⇑ a Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, PR China Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, The Chinese Academy of Sciences, Wuhan 430074, PR China c Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, PR China b a r t i c l e i n f o Article history: Received 14 April 2010 Received in revised form 18 October 2010 Accepted 4 November 2010 Available online 14 November 2010 Keywords: Grape Volatile compound Maturation SPME/GC–MS a b s t r a c t Volatile compounds of three different flavour table-grapes, ‘Jingxiu’, ‘Bimeijia’ and ‘Jingya’, were investigated during and after maturation using SPME/GC–MS. All the alcohols and carbonyls, along with most of the C6 compounds and terpenoids, were evident before veraison, while most of the esters were detected at or after veraison. C6 compounds increased in the early period of maturation, and then decreased. Most alcohols and carbonyls tended to continuously decrease during ripening. Except for geraniol, terpenoids increased until maturation, then decreased. Some esters continued to increase after maturation. Principal component analysis showed that terpenoids and esters were the characteristic volatiles of ripe ‘Bimeijia’ and ‘Jingya’ grapes, respectively. ‘Bimeijia’ had the highest terpenoid content at maturity, while ‘Jingya’ continued to accumulate some esters after maturation. To achieve berries of full-bodied aroma, ‘Bimeijia’ should be harvested at maturity and ‘Jingya’ should have a delayed harvest. For the neutral grape ‘Jingxiu’, delayed harvest is recommended to reduce the ‘green’ odour. Ó 2010 Elsevier Ltd. All rights reserved. 1. Introduction Grape ripening is a physiological period that starts at the moment of veraison and lasts until the fruit is fully ripened. This is a very important period that influences the composition of the grapes and determines varietal characteristics (Gómez & Martínez, 1995). Grapes undergo many changes during the ripening process which involve a number of physical and biochemical modifications, including weight, volume, rigidity, sugar, acidity, colour and aroma. The full-bodied aroma of fruit is one of the most important factors that attracts consumers and is essential for the highlycompetitive market and food industry. Harvesting at the proper stage of maturity is essential for optimum grape quality. Grapes are a nonclimacteric respiration fruit and do not ripen further after harvest, and so can be harvested at a suitable stage with the best qualities of level of soluble solids, berry weight, titratable acidity, as well as full flavour characteristics. To harvest at the ideal maturity, it is necessary to investigate the composition and concentrations of volatiles of fruit in the field during and after maturation. Grape germplasm can be divided into three groups, based on volatile compounds: Vitis labrusca and its hybrids are characterised by abundant esters; Muscat aroma cultivars of Vitis vinifera have high concentrations of terpenoids; neutral grapes, mainly from ⇑ Corresponding author. Tel.: +86 27 87510599; fax: +86 27 87510251. E-mail address: shhli@wbgcas.cn (S. Li). 0308-8146/$ - see front matter Ó 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.foodchem.2010.11.029 84 cultivars of V. vinifera, have few volatiles other than C6 compounds (Yang et al., 2009). Most grapes grown in China and other Asian countries, such as in Japan and Korea, are table grapes. Moreover, hybrid cultivars between V. vinifera and V. labrusca have mostly been grown as table grapes in these areas, due to their high sugar and lower acid levels, and high disease resistance (Liu, Wu, Fan, Li, & Li, 2006). Some studies have focused on the evolution of volatile compounds during grape berry ripening (Fenoll, Manso, Hellín, Ruiz, & Flores, 2009; Gunata, Bayonove, Baumes, & Cordonnier, 1985; Park, Morrison, Adams, & Noble, 1991; Wilson, Strauss, & Williams, 1984), but most have concentrated on Muscat cultivars, and grapes with non-Muscat flavour have received little attention. Moreover, the harvest of some grape cultivars can be delayed for more than 1 month after their berries ripen, with no decrease of sugars, or even with sugar accumulation (Song, Fan, Wu, & Li, 2007). Grapes of the sugar accumulation type after maturation are recommended to be grown in the tourist area and delaying of the harvest often happens. It is valuable to know the evolution characters of volatile composition and content in grape berries after ripening. Compared with conventional solvent extraction, solid-phase microextraction is a fast, easy to use, inexpensive and solvent-free procedure for aroma and flavour studies (Zhang, Yang, & Pawliszyn, 1994). The technique has been successfully applied to analyse volatile compounds of grapes (Coelho, Rocha, Delgadillo, & Coimbra, 2006; Câmara, Herbert, Marques, & Alves, 2004; Sánchez-Palomo, Díaz-Maroto, & Pérez-Coello, 2005; Yang et al., Plant Biology ISSN 1435-8603 RESEARCH PAPER Fine-scale spatial genetic structure and gene flow in a small, fragmented population of Sinojackia rehderiana (Styracaceae), an endangered tree species endemic to China X. Yao1,*, J. Zhang1,2,*, Q. Ye1 & H. Huang1,3 1 Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China 2 College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi, China 3 South China Botanical Garden ⁄ South China Institute of Botany, Chinese Academy of Sciences, Guangzhou, Guangdong, China Keywords Conservation strategies; gene flow; habitat fragmentation; spatial genetic structure. Correspondence H. Huang, South China Botanical Garden ⁄ South China Institute of Botany, Chinese Academy of Sciences, Guangzhou, 510650, Guangdong, China. E-mail: huanghw@mail.scbg.ac.cn Editor F. Roux *These authors contributed equally to this work. Received: 24 November 2009; Accepted: 9 April 2010 doi:10.1111/j.1438-8677.2010.00361.x ABSTRACT Populations of Sinojackia rehderiana are highly threatened and have small and scattered distribution due to habitat fragmentation and human activities. Understanding changes in genetic diversity, the fine-scale spatial genetic structure (SGS) at different life stages and gene flow of S. rehderiana is critical for developing successful conservation strategies for fragmented populations of this endangered species. In this study, 208 adults, 114 juveniles and 136 seedlings in a 50 · 100-m transect within an old-growth forest were mapped and genotyped using eight microsatellite makers to investigate the genetic diversity and SGS of this species. No significant differences in genetic diversity among different life-history stages were found. However, a significant heterozygote deficiency in adults and seedlings may result from substantial biparental inbreeding. Significant fine-scale spatial structure was found in different life-history stages within 19 m, suggesting that seed dispersal mainly occurred near a mother tree. Both historical and contemporary estimates of gene flow (13.06 and 16.77 m) indicated short-distance gene dispersal in isolated populations of S. rehderiana. The consistent spatial structure revealed in different life stages is most likely the result of limited gene flow. Our results have important implications for conservation of extant populations of S. rehderiana. Measures for promoting pollen flow should be taken for in situ conservation. The presence of a SGS in fragmented populations implies that seeds for ex situ conservation should be collected from trees at least 19-m apart to reduce genetic similarity between neighbouring individuals. INTRODUCTION In China, habitat destruction and fragmentation resulting from local deforestation and urbanisation activities has been an increasingly dominant process in shaping the landscape over the past 60 years (Gu 1998). Habitat fragmentation has been generally recognised as a major threat to plant population survival and has been the subject of research interest for the past two decades (Young et al. 1996). Small, isolated populations are particularly vulnerable to the effects of inbreeding, genetic drift and reduced genetic diversity. Decreased genetic variability may limit a species’ ability to adapt to different environmental conditions and accelerate extinction of endangered populations (Young et al. 1996). Hence, numerous previous studies mainly focused on the genetic diversity of fragmented populations (Young et al. 1996; Jump & Peñuelas 2006), while recently more and more attention has been paid to fine-scale spatial genetic structure (SGS) of fragmented populations (Ishihama et al. 2005; Van Rossum & Triest 2006; Bittencourt & Sebbenn 2007; De-Lucas et al. 2009). Knowledge of spatial genetic structure and changes in genetic diversity should help to understand key evolutionary process and has important implications for effective management of remnant natural populations (Gapare & Aitken 2005). Spatial genetic structure (SGS) is defined as the non-random distribution of genetic variation among individuals within populations (Loveless & Hamrick 1984; Heywood 1991). SGS may be affected by a combination of factors such as gene flow, population density, breeding system, genetic drift, life form and local selection (Wright 1943; Heywood 1991; Kalisz et al. 2001; Vekemans & Hardy 2004; Bittencourt & Sebbenn 2007). However, limited gene flow (pollen and seed dispersal within population) is considered the predominant determinant in establishment of SGS (Jacquemyn et al. 2006). As plants are sessile organisms, either limited dispersal of both pollen and seed, or genetically related individuals clustered near their maternal parent would generate significant local SGS (Wright 1943; Kalisz et al. 2001; Bittencourt & Sebbenn 2007). Furthermore, SGS within populations is Plant Biology 13 (2011) 401–410 ª 2010 German Botanical Society and The Royal Botanical Society of the Netherlands 85 401 Botanical Journal of the Linnean Society, 2011, 165, 278–284. With 1 figure Failure of sexual reproduction found in micropropagated critically endangered plants prior to reintroduction: a cautionary tale QIGANG YE1, ERIC BUNN2,3* and KINGSLEY W. DIXON2,3 1 Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, The Chinese Academy of Sciences, Moshan. Wuhan City. Hubei Province 430074, China 2 Botanic Gardens and Parks Authority, Kings Park and Botanic Garden, West Perth, Western Australia 6005, Australia 3 School of Plant Biology, Faculty of Natural and Agricultural Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia Received 20 August 2010; revised 10 November 2010; accepted for publication 12 November 2010 Micropropagation is a useful technique for ex situ multiplication and restoration of critically endangered plant species, but the sexual reproductive behaviour of micropropagated plants is seldom evaluated prior to reintroduction. We examined the critically endangered species Rulingia sp. ‘Trigwell Bridge’, with only three remaining plants known in the wild, as a model case to examine this issue. Abnormalities in micropropagated plants of this species related to four floral traits (lengths of sepals, petals and anthers and width of anthers). The number of pollen grains per flower of abnormal individuals was lower than in plants with apparently normal flowers (wild types), but not significantly so (P = 0.068). Pollen viability for the abnormal plant (0.87 ± 0.26%) was significantly lower than for the plants exhibiting wild-type floral morphology (45.42 ± 4.47%). Experimental manipulations were used to examine the mating behaviour of normal and abnormal plants. The results showed that both male and female reproductive failure was linked to individuals exhibiting abnormal flowering attributes. Such aberrant reproductive performance in a micropropagated rare species predicates caution when using micropropagated plants in reintroduction programmes, highlighting the importance of screening for reproductive normality prior to release of micropropagated plants (especially for critically endangered species where reliance on in vitro propagation methods is often a necessity). © 2011 The Linnean Society of London, Botanical Journal of the Linnean Society, 2011, 165, 278–284. ADDITIONAL KEYWORDS: abnormal sexual reproduction – endangened plants – micropropagation – restoration – Rulingia sp. ‘Trigwell Bridge’. INTRODUCTION successfully implemented for conservation of threatened or endangered plants (e.g. Edson et al., 1997; Seeni & Latha, 2000; William Decruse et al., 2003; Misic Danijela et al., 2005). As a technology for ex situ conservation, micropropagation can be fast, uses small amounts of seed or shoots and may succeed when other methods fail (Fay, 1992). The effect of precocious flowering in micropropagated plants derived from tissues of mature plants, when compared with seedling-derived plants, also provides the opportunity to evaluate the reproductive success of a reintroduced population Ex situ conservation facilitates species recovery by providing accelerated means for increasing plant numbers for reintroduction of plants into protected areas (Maunder, 1992). Micropropagation can be used to multiply stock plant material rapidly to produce large numbers of plants, particularly in critically endangered plants (Wochok, 1981) and has been *Corresponding author. E-mail: ebunn@bgpa.wa.gov.au 278 © 2011 The Linnean Society of London, Botanical Journal of the Linnean Society, 2011, 165, 278–284 86 BIOLOGIA PLANTARUM 55 (3): 567-571, 2011 BRIEF COMMUNICATION Isolation and characterization of two MADS-box genes from Lycium barbarum S.H. ZENG1,2, Y.Q. XU3 and Y. WANG1,2* Key Laboratory of Pant Germplasm Enhancement and Special Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, P.R. China1 Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, P.R. China2 College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330006, P.R. China2 Abstract To broaden our knowledge of flower development, two floral homeotic genes, LbAG and LbSEP3, were isolated from the flower of Lycium barbarum L. The open reading frame length of LbAG and LbSEP3 were 1090 and 992 bp encoding 249 and 242 amino acids, respectively. Sequence alignment and phylogenetic analysis indicated that LbAG belonged to C-type MADS-box gene and that LbSEP3 was E-type MADS-box gene. Compared with other floral homeotic proteins, LbAG held the conserved AG motif I, II and LbSEP3 conserved SEP3 motif I, II. Expression profile showed that LbAG transcripts were abundant in inner two whorls and fruit but not in root, leaf, sepal, and petal, and that LbSEP3 constitutively expressed in root, leaf, fruit, and all the four floral whorls. Additional key words: expression profile, floral whorls, open reading frame, PCR, RACE. ⎯⎯⎯⎯ Pnueli et al. 1994), tobacco (NAG1; Kempin et al. 1993), petunia (pMADS3; Kapoor et al. 2002), and Crocus sativus (CsAG1; Tsaftaris et al. 2005). Recently, atypical C-type genes, expressing in the vegetative tissues and/or outer two whorls from some species, were also characterized (Van der Linden et al. 2002, Endo et al. 2006, Tani et al. 2009). Although previous studies discovered expression of SEP3-like genes restricted to the inner three whorls (Jang et al. 1999, Pelaz et al. 2001, Ferrario et al. 2003), expression of more and more SEP3like genes have been found also in sepal, leaf, seed and fruit (Endo et al. 2006, Tani et al. 2009). In summary, the divergent expression profiles of homeotic MADS-box genes hinted that MADS-box homologs (AG-like and SEP3-like) derived from different plants diversified A typical eudicot flower comprised of four parts, namely sepals, petals, stamens, and carpels positioning in a concentric-whorl manner from outside to inside. Based on the extensive genetic and molecular studies on the flower development of Arabidopsis, Antirrhinum, and other non-model plants, a classic ABCE model (Coen and Meyerowitz 1991, Soltis et al. 2007) was proposed that four classes of floral homeotic genes were responsible individually or jointly for determining the identity of floral organs. So far, C-type genes involved in stamen and carpel development have been isolated from lots of species. Typical C-type genes, which were confined to express in the stamen and carpel, were identified in Arabidopsis (AGAMOUS; Yanofsky et al. 1990), tomato (TAG1; ⎯⎯⎯⎯ Received 31 March 2010, accepted 3 May 2010. Abbreviations: AG - AGAMOUS; SEP3 - SEPALLATA3; ORF - open reading frame; PCR - polymerase chain reaction; RACE - rapid amplification of cDNA ends; RT-PCR - reverse transcription polymerase chain reaction. Acknowledgements: This work was partially funded by a grant from the Major State Basic Research Development Program of China (973 Program) (No.2010CB126603), The CAS/SAFEA International Partnership Program of Creative Research Teams (0921101001), National Natural Science Foundation of China (30800624), and 100 Talents Program of Chinese Academy of Sciences. * Corresponding author; fax: (+86) 27 87510670, e-mail: yingwang@wbgcas.cn 567 87 Trends in Food Science & Technology 22 (2011) 672e688 Review Microwave assisted extraction of secondary metabolites from plants: Current status and future directions Extraction is one of the crucial steps for research and development of plant secondary metabolites. Over the past 25 years, a large number of manuscripts of microwave assisted extraction have been published and lots of remarkable results have been achieved. However, there are still many theoretical and technical barriers in the area of microwave assisted extraction of plant secondary metabolites, which need to be overcome. This paper reviews recent advances in microwave assisted extraction of plant secondary metabolites, such as flavonoids, quinones, phenylpropanoids, terpenoids and alkaloids. Principles and mechanisms, apparatuses and equipment, advantages and disadvantages of microwave assisted extraction are also summarized. The last part of the paper introduces new and emerging technologies of microwave technique, and then suggests strategies for further research into microwave assisted extraction of plant secondary metabolites. Hua-Feng Zhanga,b, Xiao-Hua Yangb,d,* and Ying Wangc,** Introduction Plants produce an amazing diversity of secondary metabolites, which have multiple functions throughout the plant’s life cycle. Besides their role as mediators in the interaction of the plant with its biotic and abiotic environments, such as plantemicrobe, planteanimal and planteplant interactions, plant secondary metabolites are involved in the fertility and germination of pollen (Schijlen, Ric de Vos, van Tunen, & Bovy, 2004). On the other hand, plant secondary metabolites are invaluable resources, useful in food additives, fragrances, pigment or directly in medicines (Bourgaud, Gravot, Milesi, & Gontier, 2001; Yazaki, 2006). Typically, more than 5  105 different flavonoids have been identified and many of them have become important nutraceuticals and pharmaceuticals (Khosroushahi et al., 2006; Moon, Wang, & Morris, 2006). Hence, it is of interest to extract secondary metabolites from plants. However, plants contain a wide variety of chemical constituents and the abundance of the target secondary metabolites is usually low (Bourgaud et al., 2001), which present a great challenge in the recovery and purification of plant secondary metabolites. Microwave assisted extraction is one of the important techniques for extracting valuable compounds from vegetal materials (Ganzler, Salgo, & Valko, 1986; Gujar, Wagh, & Gaikar, 2009; Hayat et al., 2009; Perez-Serradilla, Jap onLujan, & Luque de Castro, 2007; Spigno & Faveri, 2009; Yeoh, Shi, & Langrish, 2008), and it is quite adaptable on a small or large scale (i.e. on a laboratory or industry scale) a National Engineering Laboratory of Endangered Medicinal Materials Resources Development in Northwest China, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710062, PR China b Center of Teaching Experiment for Postgraduate in Medicine of Education Innovation Base of Ministry of Education, School of Medicine, Xi’an Jiaotong University, Xi’an 710061, PR China c Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, PR China d Department of Biology, Moscow State University, Moscow 119991, Russia (Center of Teaching Experiment for Postgraduate in Medicine of Education Innovation Base of Ministry of Education, School of Medicine, Xi’an Jiaotong University, Xi’an 710061, PR China. Tel.: D86 29 82657505; e-mail: yxh@bk.ru) Plant secondary metabolites are known to be an important source of foods, fragrances, pigment, drugs and so on. * Corresponding author. ** Corresponding author. 0924-2244/$ - see front matter Ó 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.tifs.2011.07.003 88 Journal of Integrative Plant Biology 2011, 53 (3): 232–245 Research Article Transferability of Microsatellite Markers from Brachypodium distachyon to Miscanthus sinensis, a Potential Biomass Crop F ∗ Hua Zhao1 , Jiangyan Yu1 , Frank M. You2 , Mingcheng Luo2 and Junhua Peng1,3 1 Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan 430074, China 2 Department of Plant Sciences, University of California, Davis, CA 95616, USA 3 Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523-1170, USA ∗ Corresponding author Tel(Fax): +86 27 8761 7230; E-mail: jpeng@lamar.colostate.edu, junhuapeng@yahoo.com F Articles can be viewed online without a subscription. Available online on 21 December 2010 at www.jipb.net and www.wileyonlinelibrary.com/journal/jipb doi: 10.1111/j.1744-7909.2010.01026.x Abstract Miscanthus sinensis has high biomass yield and contributed two of the three genomes in M. x giganteus, a bioenergy crop widely studied in Europe and North America, and thus is a potential biomass crop and an important germplasm for Miscanthus breeding. Molecular markers are essential for germplasm evaluation, genetic analyses and new cultivar development in M. sinensis. In the present study, we reported transferability of simple sequence repeat (SSR) markers from Brachypodium distachyon to M. sinensis. A set of 57 SSR markers evenly distributed across the B. distachyon genome were deliberately designed. Out of these B. distachyon SSR markers, 86.0% are transferable to M. sinensis. The SSR loci amplified in M. sinensis were validated by re-sequencing the amplicons. The polymorphism information content (PIC) of the transferable SSR markers varied from 0.073 to 0.375 with a mean of 0.263, assessed based on 21 M. sinensis genotypes. Phylogenetic tree based on 162 alleles detected by 49 SSR markers could unambiguously distinguish B. distachyon from M. sinensis, and cluster 21 M. sinensis genotypes into three groups that are basically in coincidence with their geographical distribution and ecotype classifications. The markers developed by the comparative genomic approach could be useful for germplasm evaluation, genetic analysis, and marker-assisted breeding in Miscanthus. Zhao H, Yu J, You FM, Luo M, Peng JH (2011) Transferability of microsatellite markers from Brachypodium distachyon to Miscanthus sinensis, a potential biomass crop. J. Integr. Plant Biol. 53(3), 232–245. biofuel crop in Europe (Price et al. 2004). The aboveground standing biomass is recorded up to 20–30 t/ha (Jorgensen and Schwarz 2000). Particularly, many mineral nutrients are recycled through leaf drop and in vivo re-translocation to rhizomes for next growing season, which leads to relative low establishment costs. Miscanthus (35.76 t/ha) is more than three times as productive as switchgrass (9.4 t/ha) (Khanna et al. 2008). Therefore, Miscanthus is an ideal plant species for producing fuel ethanol at a low cost. However, narrow genetic base of M. x giganteus limits the breeding for tolerance to Introduction Perennial grass crops as renewable energy sources are important for ensuring energy security and the reduction of negative impacts of grain-based ethanol production (Hill et al. 2006). Miscanthus is a typical C 4 perennial grass species with high potential in energy production due to high biomass yields and ligno-cellulose (Lewandowski et al. 2000, 2003). A sterile triploid hybrid Miscanthus x giganteus, a cross between M. sacchariflorus and M. sinensis, has been proved to be a suitable  C 2011 Institute of Botany, the Chinese Academy of Sciences 89 武汉植物园主办“东非生物多样性与保护生物学” 培训班 中国科学院植物种质创新与特色农业重点实验 召开第一届学术委员会第二场会议 重点实验室成员前往中国科学院植物研究所开展 学术调研活动 中国科学院植物种质创新与特色农业重点实验室 Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences 网址:http://pg.wbgcas.cn/ 地址:湖北省武汉市 磨山中国科学院武汉植物园 邮编:430074 电话:027-87510562 传真:027-87510670 E-mail:zhouling@wbgcas.cn

相关文章